Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380558617> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4380558617 abstract "Learning and analysis of network robustness, including controllability robustness and connectivity robustness, is critical for various networked systems against attacks. Traditionally, network robustness is determined by attack simulations, which is very time-consuming and even incapable for large-scale networks. Network Robustness Learning, which is dedicated to learning network robustness with high precision and high speed, provides a powerful tool to analyze network robustness by replacing simulations. In this paper, a novel versatile and unified robustness learning approach via graph transformer (NRL-GT) is proposed, which accomplishes the task of controllability robustness learning and connectivity robustness learning from multiple aspects including robustness curve learning, overall robustness learning, and synthetic network classification. Numerous experiments show that: 1) NRL-GT is a unified learning framework for controllability robustness and connectivity robustness, demonstrating a strong generalization ability to ensure high precision when training and test sets are distributed differently; 2) Compared to the cutting-edge methods, NRL-GT can simultaneously perform network robustness learning from multiple aspects and obtains superior results in less time. NRL-GT is also able to deal with complex networks of different size with low learning error and high efficiency; 3) It is worth mentioning that the backbone of NRL-GT can serve as a transferable feature learning module for complex networks of different size and different downstream tasks." @default.
- W4380558617 created "2023-06-14" @default.
- W4380558617 creator A5011568766 @default.
- W4380558617 creator A5055115466 @default.
- W4380558617 creator A5079784360 @default.
- W4380558617 creator A5092160864 @default.
- W4380558617 date "2023-06-12" @default.
- W4380558617 modified "2023-10-16" @default.
- W4380558617 title "Network Robustness Learning via Graph Transformer" @default.
- W4380558617 doi "https://doi.org/10.48550/arxiv.2306.06913" @default.
- W4380558617 hasPublicationYear "2023" @default.
- W4380558617 type Work @default.
- W4380558617 citedByCount "0" @default.
- W4380558617 crossrefType "posted-content" @default.
- W4380558617 hasAuthorship W4380558617A5011568766 @default.
- W4380558617 hasAuthorship W4380558617A5055115466 @default.
- W4380558617 hasAuthorship W4380558617A5079784360 @default.
- W4380558617 hasAuthorship W4380558617A5092160864 @default.
- W4380558617 hasBestOaLocation W43805586171 @default.
- W4380558617 hasConcept C104317684 @default.
- W4380558617 hasConcept C119857082 @default.
- W4380558617 hasConcept C120314980 @default.
- W4380558617 hasConcept C137726913 @default.
- W4380558617 hasConcept C154945302 @default.
- W4380558617 hasConcept C185592680 @default.
- W4380558617 hasConcept C41008148 @default.
- W4380558617 hasConcept C55493867 @default.
- W4380558617 hasConcept C58166 @default.
- W4380558617 hasConcept C63479239 @default.
- W4380558617 hasConceptScore W4380558617C104317684 @default.
- W4380558617 hasConceptScore W4380558617C119857082 @default.
- W4380558617 hasConceptScore W4380558617C120314980 @default.
- W4380558617 hasConceptScore W4380558617C137726913 @default.
- W4380558617 hasConceptScore W4380558617C154945302 @default.
- W4380558617 hasConceptScore W4380558617C185592680 @default.
- W4380558617 hasConceptScore W4380558617C41008148 @default.
- W4380558617 hasConceptScore W4380558617C55493867 @default.
- W4380558617 hasConceptScore W4380558617C58166 @default.
- W4380558617 hasConceptScore W4380558617C63479239 @default.
- W4380558617 hasLocation W43805586171 @default.
- W4380558617 hasOpenAccess W4380558617 @default.
- W4380558617 hasPrimaryLocation W43805586171 @default.
- W4380558617 hasRelatedWork W1590311206 @default.
- W4380558617 hasRelatedWork W1980755708 @default.
- W4380558617 hasRelatedWork W2048346223 @default.
- W4380558617 hasRelatedWork W2160571967 @default.
- W4380558617 hasRelatedWork W2369604612 @default.
- W4380558617 hasRelatedWork W2385695368 @default.
- W4380558617 hasRelatedWork W2961085424 @default.
- W4380558617 hasRelatedWork W2998813341 @default.
- W4380558617 hasRelatedWork W4306674287 @default.
- W4380558617 hasRelatedWork W4224009465 @default.
- W4380558617 isParatext "false" @default.
- W4380558617 isRetracted "false" @default.
- W4380558617 workType "article" @default.