Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380574642> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4380574642 abstract "This paper expressed three regression models that predict the lithium-ion battery life for electric cars based on a supervised machine-learning regression algorithm. The Linear Regression, Bagging Regressor, and Random Forest Regressor models will be compared for capacity prediction of lithium-ion batteries based on voltage-dependent per-cell modeling. When sufficient test data is available, three linear regression learning algorithms will train this model to give a promising battery capacity prediction result. The effectiveness of the three linear regression models will be demonstrated experimentally. The experiment table system is built with an NVIDIA Jetson Nano 4GB Developer Kit B01, a battery, an Arduino, and a voltage sensor. The Random Forest Regressor model has evaluated the model's accuracy based on the average of the square of the difference between the initial value and the predicted value in the data set (MSE (Mean Square Error)), and RMSE (Root Mean Squared Error) is smaller than the Linear Regression model, Bagging Regressor model (MSE is 516.332762; RMSE is= 22.722957). The Linear Regression model with MSE and RMSE is the biggest (MSE is 22060.500669; RMSE is= 148.527777). This result allows the Random Forest Regressor model to remain a helpful life prediction of lithium-ion batteries. Moreover, this result allows rapid identification of battery manufacturing processes and will enable users to decide to replace defective batteries when deterioration in battery performance and lifespan are identified." @default.
- W4380574642 created "2023-06-15" @default.
- W4380574642 creator A5023214935 @default.
- W4380574642 date "2023-06-14" @default.
- W4380574642 modified "2023-09-23" @default.
- W4380574642 title "Experimental Study on Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Three Regressions Models for Electric Vehicle Applications" @default.
- W4380574642 doi "https://doi.org/10.20944/preprints202306.0999.v1" @default.
- W4380574642 hasPublicationYear "2023" @default.
- W4380574642 type Work @default.
- W4380574642 citedByCount "0" @default.
- W4380574642 crossrefType "posted-content" @default.
- W4380574642 hasAuthorship W4380574642A5023214935 @default.
- W4380574642 hasBestOaLocation W43805746421 @default.
- W4380574642 hasConcept C105795698 @default.
- W4380574642 hasConcept C119857082 @default.
- W4380574642 hasConcept C121332964 @default.
- W4380574642 hasConcept C139945424 @default.
- W4380574642 hasConcept C152877465 @default.
- W4380574642 hasConcept C163258240 @default.
- W4380574642 hasConcept C169258074 @default.
- W4380574642 hasConcept C33923547 @default.
- W4380574642 hasConcept C41008148 @default.
- W4380574642 hasConcept C48921125 @default.
- W4380574642 hasConcept C555008776 @default.
- W4380574642 hasConcept C62520636 @default.
- W4380574642 hasConcept C83546350 @default.
- W4380574642 hasConceptScore W4380574642C105795698 @default.
- W4380574642 hasConceptScore W4380574642C119857082 @default.
- W4380574642 hasConceptScore W4380574642C121332964 @default.
- W4380574642 hasConceptScore W4380574642C139945424 @default.
- W4380574642 hasConceptScore W4380574642C152877465 @default.
- W4380574642 hasConceptScore W4380574642C163258240 @default.
- W4380574642 hasConceptScore W4380574642C169258074 @default.
- W4380574642 hasConceptScore W4380574642C33923547 @default.
- W4380574642 hasConceptScore W4380574642C41008148 @default.
- W4380574642 hasConceptScore W4380574642C48921125 @default.
- W4380574642 hasConceptScore W4380574642C555008776 @default.
- W4380574642 hasConceptScore W4380574642C62520636 @default.
- W4380574642 hasConceptScore W4380574642C83546350 @default.
- W4380574642 hasLocation W43805746421 @default.
- W4380574642 hasOpenAccess W4380574642 @default.
- W4380574642 hasPrimaryLocation W43805746421 @default.
- W4380574642 hasRelatedWork W1987874405 @default.
- W4380574642 hasRelatedWork W2060912888 @default.
- W4380574642 hasRelatedWork W2066413987 @default.
- W4380574642 hasRelatedWork W2375721435 @default.
- W4380574642 hasRelatedWork W2917200448 @default.
- W4380574642 hasRelatedWork W2966251753 @default.
- W4380574642 hasRelatedWork W4300642372 @default.
- W4380574642 hasRelatedWork W4307266384 @default.
- W4380574642 hasRelatedWork W4323568033 @default.
- W4380574642 hasRelatedWork W4377822244 @default.
- W4380574642 isParatext "false" @default.
- W4380574642 isRetracted "false" @default.
- W4380574642 workType "article" @default.