Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380576334> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4380576334 abstract "HomeCirculation: Cardiovascular ImagingVol. 16, No. 6Measurement of Myocardial Blood Flow With Positron Emission Tomography and Single-Photon Emission Computed Tomography for Diagnosis of Cardiac Allograft Vasculopathy No AccessEditorialRequest AccessFull TextAboutView Full TextView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toNo AccessEditorialRequest AccessFull TextMeasurement of Myocardial Blood Flow With Positron Emission Tomography and Single-Photon Emission Computed Tomography for Diagnosis of Cardiac Allograft Vasculopathy Terrence D. Ruddy and Roger Glenn Wells Terrence D. RuddyTerrence D. Ruddy Correspondence to: Terrence D. Ruddy, MD, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON K1Y 4W7, Canada. Email E-mail Address: [email protected] https://orcid.org/0000-0002-0686-5449 Division of Cardiology, University of Ottawa Heart Institute, Ontario, Canada. Search for more papers by this author and Roger Glenn WellsRoger Glenn Wells https://orcid.org/0000-0002-5376-1263 Division of Cardiology, University of Ottawa Heart Institute, Ontario, Canada. Search for more papers by this author Originally published14 Jun 2023https://doi.org/10.1161/CIRCIMAGING.123.015593Circulation: Cardiovascular Imaging. 2023;16This article is a commentary on the followingMyocardial Flow Assessment After Heart Transplantation Using Dynamic Cadmium-Zinc-Telluride Single-Photon Emission Computed Tomography With 201Tl and 99mTc Tracers and Validated by 13N-NH3 Positron Emission TomographyFootnotesFor Disclosures, see page 502.The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.Correspondence to: Terrence D. Ruddy, MD, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON K1Y 4W7, Canada. Email truddy@ottawaheart.caReferences1. Khush KK, Hsich E, Potena L, Cherikh WS, Chambers DC, Harhay MO, Hayes D, Perch M, Sadavarte A, Toll A, et al; International Society for Heart and Lung Transplantation. International Society for Heart and Lung Transplantation. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-eighth adult heart transplantation report - 2021; focus on recipient characteristics.J Heart Lung Transplant. 2021; 40:1035–1049. doi: 10.1016/j.healun.2021.07.015CrossrefMedlineGoogle Scholar2. Hiemann NE, Wellnhofer E, Knosalla C, Lehmkuhl HB, Stein J, Hetzer R, Meyer R. Prognostic impact of microvasculopathy on survival after heart transplantation: evidence from 9713 endomyocardial biopsies.Circulation. 2007; 116:1274–1282. doi: 10.1161/CIRCULATIONAHA.106.647149LinkGoogle Scholar3. Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, Fedson S, Fisher P, Gonzales-Stawinski G, Martinelli L, et al; International Society of Heart and Lung Transplantation Guidelines. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients.J Heart Lung Transplant. 2010; 29:914–956. doi: 10.1016/j.healun.2010.05.034CrossrefMedlineGoogle Scholar4. Elkaryoni A, Abu-Sheasha G, Altibi AM, Hassan A, Ellakany K, Nanda NC. Diagnostic accuracy of dobutamine stress echocardiography in the detection of cardiac allograft vasculopathy in heart transplant recipients: a systematic review and meta-analysis study.Echocardiogr. 2019; 36:528–536. doi: 10.1111/echo.14268CrossrefMedlineGoogle Scholar5. Chirakarnjanakorn S, Starling RC, Popović ZB, Griffin BP, Desai MY. Dobutamine stress echocardiography during follow-up surveillance in heart transplant patients: diagnostic accuracy and predictors of outcomes.J Heart Lung Transplant. 2015; 34:710–717. doi: 10.1016/j.healun.2014.11.019CrossrefMedlineGoogle Scholar6. Konerman MC, Lazarus JJ, Weinberg RL, Shah RV, Ghannam M, Hummel SL, Corbett JR, Ficaro EP, Aaronson KD, Colvin MM, et al. Reduced myocardial flow reserve by positron emission tomography predicts cardiovascular events after cardiac transplantation.Circ Heart Fail. 2018; 11:e004473. doi: 10.1161/CIRCHEARTFAILURE.117.004473LinkGoogle Scholar7. Chih S, Chong AY, Erthal F, deKemp RA, Davies RA, Stadnick E, So DY, Overgaard C, Wells G, Mielniczuk LM, et al. PET assessment of epicardial intimal disease and microvascular dysfunction in cardiac allograft vasculopathy.J Am Coll Cardiol. 2018; 71:1444–1456. doi: 10.1016/j.jacc.2018.01.062CrossrefMedlineGoogle Scholar8. Bravo PE, Bergmark BA, Vita T, Taqueti VR, Gupta A, Seidelmann S, Christensen TE, Osborne MT, Shah NR, Ghosh N, et al. Diagnostic and prognostic value of myocardial blood flow quantification as non-invasive indicator of cardiac allograft vasculopathy.Eur Heart J. 2018; 39:316–323. doi: 10.1093/eurheartj/ehx683CrossrefMedlineGoogle Scholar9. Miller RJH, Manabe O, Tamarappoo B, Hayes S, Friedman JD, Slomka PJ, Patel J, Kobashigawa JA, Berman DS. Comparative prognostic and diagnostic value of myocardial blood flow and myocardial flow reserve after cardiac transplantation.J Nucl Med. 2020; 61:249–255. doi: 10.2967/jnumed.119.229625CrossrefMedlineGoogle Scholar10. Mc Ardle BA, Davies RA, Chen L, Small GR, Ruddy TD, Dwivedi G, Yam Y, Haddad H, Mielniczuk LM, Stadnick E, et al. Prognostic value of rubidium-82 positron emission tomography in patients after heart transplant.Circ Cardiovasc Imaging. 2014; 7:930–937. doi: 10.1161/CIRCIMAGING.114.002184LinkGoogle Scholar11. Feher A, Srivastava A, Quail MA, Boutagy NE, Khanna P, Wilson L, Miller EJ, Liu YH, Lee F, Sinusas AJ. Serial assessment of coronary flow reserve by rubidium-82 positron emission tomography predicts mortality in heart transplant recipients.JACC Cardiovasc Imaging. 2020; 13:109–120. doi: 10.1016/j.jcmg.2018.08.025CrossrefMedlineGoogle Scholar12. Ben Bouallègue F, Roubille F, Lattuca B, Cung TT, Macia JC, Gervasoni R, Leclercq F, Mariano-Goulart D. SPECT myocardial perfusion reserve in patients with multivessel coronary disease: correlation with angiographic findings and invasive fractional flow reserve measurements.J Nucl Med. 2015; 56:1712–1717. doi: 10.2967/jnumed.114.143164CrossrefMedlineGoogle Scholar13. Acampa W, Assante R, Mannarino T, Zampella E, D’Antonio A, Buongiorno P, Gaudieri V, Nappi C, Giordano A, Mainolfi CG, et al. Low-dose dynamic myocardial perfusion imaging by CZT-SPECT in the identification of obstructive coronary artery disease.Eur J Nucl Med Mol Imaging. 2020; 47:1705–1712. doi: 10.1007/s00259-019-04644-6CrossrefMedlineGoogle Scholar14. Wells RG, Marvin B, Poirier M, Renaud J, deKemp RA, Ruddy TD. Optimization of SPECT measurement of myocardial blood flow with corrections for attenuation, motion, and blood binding compared with PET.J Nucl Med. 2017; 58:2013–2019. doi: 10.2967/jnumed.117.191049CrossrefMedlineGoogle Scholar15. Agostini D, Roule V, Nganoa C, Roth N, Baavour R, Parienti JJ, Beygui F, Manrique A. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study.Eur J Nucl Med Mol Imaging. 2018; 45:1079–1090. doi: 10.1007/s00259-018-3958-7CrossrefMedlineGoogle Scholar16. Giubbini R, Bertoli M, Durmo R, Bonacina M, Peli A, Faggiano I, Albano D, Milan E, Stern E, Paghera B, et al. Comparison between N13NH3-PET and 99mTc-tetrofosmin-CZT SPECT in the evaluation of absolute myocardial blood flow and flow reserve.J Nucl Cardiol. 2021; 28:1906–1918. doi: 10.1007/s12350-019-01939-xCrossrefMedlineGoogle Scholar17. de Souza ACDAH, Harms HJ, Martell L, Bibbo C, Harrington M, Sullivan K, Hainer J, Dorbala S, Blankstein R, Taqueti VR, et al. Accuracy and reproducibility of myocardial blood flow quantification by single photon emission computed tomography imaging in patients with known or suspected coronary artery disease.Circ Cardiovasc Imaging. 2022; 15:e013987. doi: 10.1161/CIRCIMAGING.122.013987LinkGoogle Scholar18. Panjer M, Dobrolinska M, Wagenaar NRL, Slart RHJA. Diagnostic accuracy of dynamic CZT-SPECT in coronary artery disease. A systematic review and meta-analysis.J Nucl Cardiol. 2022; 29:1686–1697. doi: 10.1007/s12350-021-02721-8CrossrefMedlineGoogle Scholar19. Wells RG, Radonjic I, Clackdoyle D, Do J, Marvin B, Carey C, deKemp RA, Ruddy TD. Test-retest precision of myocardial blood flow measurements with 99mTc-tetrofosmin and solid-state detector single photon emission computed tomography.Circ Cardiovasc Imaging. 2020; 13:e009769. doi: 10.1161/CIRCIMAGING.119.009769LinkGoogle Scholar20. Ko KY, Ko CL, Lee CM, Cheng JS, Wu YW, Hsu RB, Chen YS, Wang SS, Yen RF, Cheng MF. Myocardial flow assessment after heart transplantation using dynamic CZT SPECT with 201Tl and 99mTc tracers: validated by 13N-NH3 PET.Circ Cardiovasc Imaging. 2023; 16:e015034. doi: 10.1161/CIRCIMAGING.122.015034LinkGoogle Scholar Previous Back to top Next FiguresReferencesRelatedDetailsRelated articlesMyocardial Flow Assessment After Heart Transplantation Using Dynamic Cadmium-Zinc-Telluride Single-Photon Emission Computed Tomography With 201Tl and 99mTc Tracers and Validated by 13N-NH3 Positron Emission TomographyKuan-Yin Ko, et al. Circulation: Cardiovascular Imaging. 2023;16 June 2023Vol 16, Issue 6 Advertisement Article InformationMetrics © 2023 American Heart Association, Inc.https://doi.org/10.1161/CIRCIMAGING.123.015593PMID: 37313747 Originally publishedJune 14, 2023 Keywordsvascular diseasePETtransplantationEditorialsnuclear cardiologyPDF download Advertisement SubjectsClinical StudiesImagingNuclear Cardiology and PETTransplantation" @default.
- W4380576334 created "2023-06-15" @default.
- W4380576334 creator A5004927831 @default.
- W4380576334 creator A5070896042 @default.
- W4380576334 date "2023-06-01" @default.
- W4380576334 modified "2023-09-27" @default.
- W4380576334 title "Measurement of Myocardial Blood Flow With Positron Emission Tomography and Single-Photon Emission Computed Tomography for Diagnosis of Cardiac Allograft Vasculopathy" @default.
- W4380576334 cites W1840779908 @default.
- W4380576334 cites W2043250502 @default.
- W4380576334 cites W2089560185 @default.
- W4380576334 cites W2127428439 @default.
- W4380576334 cites W2168403420 @default.
- W4380576334 cites W2625185831 @default.
- W4380576334 cites W2772375103 @default.
- W4380576334 cites W2790983738 @default.
- W4380576334 cites W2795863748 @default.
- W4380576334 cites W2808162246 @default.
- W4380576334 cites W2897101979 @default.
- W4380576334 cites W2912945880 @default.
- W4380576334 cites W2970104669 @default.
- W4380576334 cites W2983607473 @default.
- W4380576334 cites W2996212967 @default.
- W4380576334 cites W3006527817 @default.
- W4380576334 cites W3187284975 @default.
- W4380576334 cites W4200378511 @default.
- W4380576334 cites W4281691121 @default.
- W4380576334 cites W4380576577 @default.
- W4380576334 doi "https://doi.org/10.1161/circimaging.123.015593" @default.
- W4380576334 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37313747" @default.
- W4380576334 hasPublicationYear "2023" @default.
- W4380576334 type Work @default.
- W4380576334 citedByCount "0" @default.
- W4380576334 crossrefType "journal-article" @default.
- W4380576334 hasAuthorship W4380576334A5004927831 @default.
- W4380576334 hasAuthorship W4380576334A5070896042 @default.
- W4380576334 hasConcept C126322002 @default.
- W4380576334 hasConcept C126838900 @default.
- W4380576334 hasConcept C158846371 @default.
- W4380576334 hasConcept C163716698 @default.
- W4380576334 hasConcept C2775842073 @default.
- W4380576334 hasConcept C2778064278 @default.
- W4380576334 hasConcept C2778849806 @default.
- W4380576334 hasConcept C2780441642 @default.
- W4380576334 hasConcept C2909963992 @default.
- W4380576334 hasConcept C2911091166 @default.
- W4380576334 hasConcept C2989005 @default.
- W4380576334 hasConcept C37097830 @default.
- W4380576334 hasConcept C71924100 @default.
- W4380576334 hasConceptScore W4380576334C126322002 @default.
- W4380576334 hasConceptScore W4380576334C126838900 @default.
- W4380576334 hasConceptScore W4380576334C158846371 @default.
- W4380576334 hasConceptScore W4380576334C163716698 @default.
- W4380576334 hasConceptScore W4380576334C2775842073 @default.
- W4380576334 hasConceptScore W4380576334C2778064278 @default.
- W4380576334 hasConceptScore W4380576334C2778849806 @default.
- W4380576334 hasConceptScore W4380576334C2780441642 @default.
- W4380576334 hasConceptScore W4380576334C2909963992 @default.
- W4380576334 hasConceptScore W4380576334C2911091166 @default.
- W4380576334 hasConceptScore W4380576334C2989005 @default.
- W4380576334 hasConceptScore W4380576334C37097830 @default.
- W4380576334 hasConceptScore W4380576334C71924100 @default.
- W4380576334 hasIssue "6" @default.
- W4380576334 hasLocation W43805763341 @default.
- W4380576334 hasLocation W43805763342 @default.
- W4380576334 hasOpenAccess W4380576334 @default.
- W4380576334 hasPrimaryLocation W43805763341 @default.
- W4380576334 hasRelatedWork W1602122251 @default.
- W4380576334 hasRelatedWork W2132052150 @default.
- W4380576334 hasRelatedWork W2170524884 @default.
- W4380576334 hasRelatedWork W2365469462 @default.
- W4380576334 hasRelatedWork W2410023904 @default.
- W4380576334 hasRelatedWork W2417317414 @default.
- W4380576334 hasRelatedWork W2906428075 @default.
- W4380576334 hasRelatedWork W2978915138 @default.
- W4380576334 hasRelatedWork W4290433919 @default.
- W4380576334 hasRelatedWork W15549786 @default.
- W4380576334 hasVolume "16" @default.
- W4380576334 isParatext "false" @default.
- W4380576334 isRetracted "false" @default.
- W4380576334 workType "article" @default.