Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380577659> ?p ?o ?g. }
- W4380577659 abstract "Motivated by diagnosing the COVID-19 disease using two-dimensional (2D) image biomarkers from computed tomography (CT) scans, we propose a novel latent matrix-factor regression model to predict responses that may come from an exponential distribution family, where covariates include high-dimensional matrix-variate biomarkers. A latent generalized matrix regression (LaGMaR) is formulated, where the latent predictor is a low-dimensional matrix factor score extracted from the low-rank signal of the matrix variate through a cutting-edge matrix factor model. Unlike the general spirit of penalizing vectorization plus the necessity of tuning parameters in the literature, instead, our prediction modeling in LaGMaR conducts dimension reduction that respects the geometric characteristic of intrinsic 2D structure of the matrix covariate and thus avoids iteration. This greatly relieves the computation burden, and meanwhile maintains structural information so that the latent matrix factor feature can perfectly replace the intractable matrix-variate owing to high-dimensionality. The estimation procedure of LaGMaR is subtly derived by transforming the bilinear form matrix factor model onto a high-dimensional vector factor model, so that the method of principle components can be applied. We establish bilinear-form consistency of the estimated matrix coefficient of the latent predictor and consistency of prediction. The proposed approach can be implemented conveniently. Through simulation experiments, the prediction capability of LaGMaR is shown to outperform some existing penalized methods under diverse scenarios of generalized matrix regressions. Through the application to a real COVID-19 dataset, the proposed approach is shown to predict efficiently the COVID-19." @default.
- W4380577659 created "2023-06-15" @default.
- W4380577659 creator A5058437976 @default.
- W4380577659 creator A5062517400 @default.
- W4380577659 creator A5069849278 @default.
- W4380577659 creator A5073568638 @default.
- W4380577659 creator A5078901632 @default.
- W4380577659 date "2023-06-14" @default.
- W4380577659 modified "2023-10-16" @default.
- W4380577659 title "Low‐rank latent matrix‐factor prediction modeling for generalized high‐dimensional matrix‐variate regression" @default.
- W4380577659 cites W1202879735 @default.
- W4380577659 cites W1565941682 @default.
- W4380577659 cites W1580176742 @default.
- W4380577659 cites W2014165366 @default.
- W4380577659 cites W2045377163 @default.
- W4380577659 cites W2052211772 @default.
- W4380577659 cites W2057846413 @default.
- W4380577659 cites W2136002544 @default.
- W4380577659 cites W2138806521 @default.
- W4380577659 cites W2150382423 @default.
- W4380577659 cites W2194775991 @default.
- W4380577659 cites W2611015177 @default.
- W4380577659 cites W2950126918 @default.
- W4380577659 cites W2963409007 @default.
- W4380577659 cites W2964255370 @default.
- W4380577659 cites W2964277180 @default.
- W4380577659 cites W2974543344 @default.
- W4380577659 cites W3017243633 @default.
- W4380577659 cites W3094388274 @default.
- W4380577659 cites W3129086483 @default.
- W4380577659 cites W3141949304 @default.
- W4380577659 cites W3159581759 @default.
- W4380577659 cites W3194853173 @default.
- W4380577659 cites W4281868028 @default.
- W4380577659 doi "https://doi.org/10.1002/sim.9821" @default.
- W4380577659 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37314066" @default.
- W4380577659 hasPublicationYear "2023" @default.
- W4380577659 type Work @default.
- W4380577659 citedByCount "0" @default.
- W4380577659 crossrefType "journal-article" @default.
- W4380577659 hasAuthorship W4380577659A5058437976 @default.
- W4380577659 hasAuthorship W4380577659A5062517400 @default.
- W4380577659 hasAuthorship W4380577659A5069849278 @default.
- W4380577659 hasAuthorship W4380577659A5073568638 @default.
- W4380577659 hasAuthorship W4380577659A5078901632 @default.
- W4380577659 hasBestOaLocation W43805776592 @default.
- W4380577659 hasConcept C105795698 @default.
- W4380577659 hasConcept C106487976 @default.
- W4380577659 hasConcept C10879293 @default.
- W4380577659 hasConcept C11413529 @default.
- W4380577659 hasConcept C114614502 @default.
- W4380577659 hasConcept C120068334 @default.
- W4380577659 hasConcept C122123141 @default.
- W4380577659 hasConcept C141547133 @default.
- W4380577659 hasConcept C152877465 @default.
- W4380577659 hasConcept C154945302 @default.
- W4380577659 hasConcept C159985019 @default.
- W4380577659 hasConcept C164226766 @default.
- W4380577659 hasConcept C173608175 @default.
- W4380577659 hasConcept C185142706 @default.
- W4380577659 hasConcept C192562407 @default.
- W4380577659 hasConcept C28826006 @default.
- W4380577659 hasConcept C32224588 @default.
- W4380577659 hasConcept C33923547 @default.
- W4380577659 hasConcept C41008148 @default.
- W4380577659 hasConcept C41681595 @default.
- W4380577659 hasConcept C70518039 @default.
- W4380577659 hasConcept C93698799 @default.
- W4380577659 hasConceptScore W4380577659C105795698 @default.
- W4380577659 hasConceptScore W4380577659C106487976 @default.
- W4380577659 hasConceptScore W4380577659C10879293 @default.
- W4380577659 hasConceptScore W4380577659C11413529 @default.
- W4380577659 hasConceptScore W4380577659C114614502 @default.
- W4380577659 hasConceptScore W4380577659C120068334 @default.
- W4380577659 hasConceptScore W4380577659C122123141 @default.
- W4380577659 hasConceptScore W4380577659C141547133 @default.
- W4380577659 hasConceptScore W4380577659C152877465 @default.
- W4380577659 hasConceptScore W4380577659C154945302 @default.
- W4380577659 hasConceptScore W4380577659C159985019 @default.
- W4380577659 hasConceptScore W4380577659C164226766 @default.
- W4380577659 hasConceptScore W4380577659C173608175 @default.
- W4380577659 hasConceptScore W4380577659C185142706 @default.
- W4380577659 hasConceptScore W4380577659C192562407 @default.
- W4380577659 hasConceptScore W4380577659C28826006 @default.
- W4380577659 hasConceptScore W4380577659C32224588 @default.
- W4380577659 hasConceptScore W4380577659C33923547 @default.
- W4380577659 hasConceptScore W4380577659C41008148 @default.
- W4380577659 hasConceptScore W4380577659C41681595 @default.
- W4380577659 hasConceptScore W4380577659C70518039 @default.
- W4380577659 hasConceptScore W4380577659C93698799 @default.
- W4380577659 hasFunder F4320321001 @default.
- W4380577659 hasFunder F4320321592 @default.
- W4380577659 hasLocation W43805776591 @default.
- W4380577659 hasLocation W43805776592 @default.
- W4380577659 hasLocation W43805776593 @default.
- W4380577659 hasOpenAccess W4380577659 @default.
- W4380577659 hasPrimaryLocation W43805776591 @default.
- W4380577659 hasRelatedWork W1972751343 @default.
- W4380577659 hasRelatedWork W2105823495 @default.
- W4380577659 hasRelatedWork W2127072394 @default.