Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380577731> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4380577731 abstract "Surgical data quantification and comprehension expose subtle patterns in tasks and performance. Enabling surgical devices with artificial intelligence provides surgeons with personalized and objective performance evaluation: a virtual surgical assist. Here we present machine learning models developed for analyzing surgical finesse using tool-tissue interaction force data in surgical dissection obtained from a sensorized bipolar forceps. Data modeling was performed using 50 neurosurgery procedures that involved elective surgical treatment for various intracranial pathologies. The data collection was conducted by 13 surgeons of varying experience levels using sensorized bipolar forceps, SmartForceps System. The machine learning algorithm constituted design and implementation for three primary purposes, i.e., force profile segmentation for obtaining active periods of tool utilization using T-U-Net, surgical skill classification into Expert and Novice, and surgical task recognition into two primary categories of Coagulation versus non-Coagulation using FTFIT deep learning architectures. The final report to surgeon was a dashboard containing recognized segments of force application categorized into skill and task classes along with performance metrics charts compared to expert level surgeons. Operating room data recording of > 161 h containing approximately 3.6 K periods of tool operation was utilized. The modeling resulted in Weighted F1-score = 0.95 and AUC = 0.99 for force profile segmentation using T-U-Net, Weighted F1-score = 0.71 and AUC = 0.81 for surgical skill classification, and Weighted F1-score = 0.82 and AUC = 0.89 for surgical task recognition using a subset of hand-crafted features augmented to FTFIT neural network. This study delivers a novel machine learning module in a cloud, enabling an end-to-end platform for intraoperative surgical performance monitoring and evaluation. Accessed through a secure application for professional connectivity, a paradigm for data-driven learning is established." @default.
- W4380577731 created "2023-06-15" @default.
- W4380577731 creator A5000837405 @default.
- W4380577731 creator A5044363422 @default.
- W4380577731 creator A5048624729 @default.
- W4380577731 creator A5063516601 @default.
- W4380577731 date "2023-06-13" @default.
- W4380577731 modified "2023-09-30" @default.
- W4380577731 title "Tool-tissue force segmentation and pattern recognition for evaluating neurosurgical performance" @default.
- W4380577731 cites W1607976681 @default.
- W4380577731 cites W1964620727 @default.
- W4380577731 cites W1998145453 @default.
- W4380577731 cites W2023276160 @default.
- W4380577731 cites W2107466310 @default.
- W4380577731 cites W2145081273 @default.
- W4380577731 cites W2273796242 @default.
- W4380577731 cites W2346113364 @default.
- W4380577731 cites W2558121610 @default.
- W4380577731 cites W2580456502 @default.
- W4380577731 cites W2598121292 @default.
- W4380577731 cites W2768589714 @default.
- W4380577731 cites W2768899399 @default.
- W4380577731 cites W2788941211 @default.
- W4380577731 cites W2790209545 @default.
- W4380577731 cites W2888774151 @default.
- W4380577731 cites W2908201961 @default.
- W4380577731 cites W2924316106 @default.
- W4380577731 cites W2963647178 @default.
- W4380577731 cites W2974089311 @default.
- W4380577731 cites W3013053228 @default.
- W4380577731 cites W3015788359 @default.
- W4380577731 cites W3016052689 @default.
- W4380577731 cites W3035077087 @default.
- W4380577731 cites W3036877148 @default.
- W4380577731 cites W3083891030 @default.
- W4380577731 cites W3134650884 @default.
- W4380577731 cites W3150419368 @default.
- W4380577731 cites W3163243254 @default.
- W4380577731 cites W3177360067 @default.
- W4380577731 cites W3185475505 @default.
- W4380577731 cites W4210672201 @default.
- W4380577731 cites W4214809079 @default.
- W4380577731 cites W76008554 @default.
- W4380577731 cites W952135410 @default.
- W4380577731 doi "https://doi.org/10.1038/s41598-023-36702-3" @default.
- W4380577731 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37311965" @default.
- W4380577731 hasPublicationYear "2023" @default.
- W4380577731 type Work @default.
- W4380577731 citedByCount "1" @default.
- W4380577731 countsByYear W43805777312023 @default.
- W4380577731 crossrefType "journal-article" @default.
- W4380577731 hasAuthorship W4380577731A5000837405 @default.
- W4380577731 hasAuthorship W4380577731A5044363422 @default.
- W4380577731 hasAuthorship W4380577731A5048624729 @default.
- W4380577731 hasAuthorship W4380577731A5063516601 @default.
- W4380577731 hasBestOaLocation W43805777311 @default.
- W4380577731 hasConcept C119857082 @default.
- W4380577731 hasConcept C153180895 @default.
- W4380577731 hasConcept C154945302 @default.
- W4380577731 hasConcept C162324750 @default.
- W4380577731 hasConcept C187736073 @default.
- W4380577731 hasConcept C2780451532 @default.
- W4380577731 hasConcept C41008148 @default.
- W4380577731 hasConcept C89600930 @default.
- W4380577731 hasConceptScore W4380577731C119857082 @default.
- W4380577731 hasConceptScore W4380577731C153180895 @default.
- W4380577731 hasConceptScore W4380577731C154945302 @default.
- W4380577731 hasConceptScore W4380577731C162324750 @default.
- W4380577731 hasConceptScore W4380577731C187736073 @default.
- W4380577731 hasConceptScore W4380577731C2780451532 @default.
- W4380577731 hasConceptScore W4380577731C41008148 @default.
- W4380577731 hasConceptScore W4380577731C89600930 @default.
- W4380577731 hasFunder F4320334506 @default.
- W4380577731 hasIssue "1" @default.
- W4380577731 hasLocation W43805777311 @default.
- W4380577731 hasLocation W43805777312 @default.
- W4380577731 hasLocation W43805777313 @default.
- W4380577731 hasOpenAccess W4380577731 @default.
- W4380577731 hasPrimaryLocation W43805777311 @default.
- W4380577731 hasRelatedWork W2081647779 @default.
- W4380577731 hasRelatedWork W2961085424 @default.
- W4380577731 hasRelatedWork W3046775127 @default.
- W4380577731 hasRelatedWork W3170094116 @default.
- W4380577731 hasRelatedWork W4205958290 @default.
- W4380577731 hasRelatedWork W4285260836 @default.
- W4380577731 hasRelatedWork W4286629047 @default.
- W4380577731 hasRelatedWork W4306321456 @default.
- W4380577731 hasRelatedWork W4306674287 @default.
- W4380577731 hasRelatedWork W4224009465 @default.
- W4380577731 hasVolume "13" @default.
- W4380577731 isParatext "false" @default.
- W4380577731 isRetracted "false" @default.
- W4380577731 workType "article" @default.