Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380590971> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4380590971 abstract "<p>Crop analysis and prediction is a rapidly growing field that plays a vital role in optimizing agricultural practices. Crop recommendation plays a pivotal role in agriculture, empowering farmers to make informed decisions about the most suitable crops for their specific land and climate conditions. Traditionally, this process heavily relied on expert knowledge, which proved time-consuming and labor-intensive. Moreover, considering the projected global population of 9.7 billion by 2050, the need to produce more food sustainably becomes imperative. Machine learning techniques can play a crucial role in effectively automating crop recommendations, and detecting pests and diseases to enable farmers to optimize their yield from the land while simultaneously maintaining soil fertility and replenishing essential nutrients. This paper analyses the performance of crop recommendation across seven distinct machine-learning algorithms. The proposed system leverages various features, including soil composition and climate data, to accurately predict the most suitable crops for specific locations. This system has the potential to revolutionize crop recommendation, benefiting farmers of all scales by enhancing crop yields, sustainability, and overall profitability. Through extensive evaluation of a comprehensive historical data set, we have achieved near-perfect accuracy by training and testing models the machine learning algorithms with various configurations. We demonstrate accuracy consistently over 95% across all models, with the highest achieved accuracy reaching 99.5%.</p>" @default.
- W4380590971 created "2023-06-15" @default.
- W4380590971 creator A5015671621 @default.
- W4380590971 creator A5034680380 @default.
- W4380590971 creator A5062412552 @default.
- W4380590971 creator A5071696684 @default.
- W4380590971 date "2023-06-14" @default.
- W4380590971 modified "2023-09-28" @default.
- W4380590971 title "Smart Farming: Crop Recommendation using Machine Learning with Challenges and Future Ideas" @default.
- W4380590971 doi "https://doi.org/10.36227/techrxiv.23504496" @default.
- W4380590971 hasPublicationYear "2023" @default.
- W4380590971 type Work @default.
- W4380590971 citedByCount "0" @default.
- W4380590971 crossrefType "posted-content" @default.
- W4380590971 hasAuthorship W4380590971A5015671621 @default.
- W4380590971 hasAuthorship W4380590971A5034680380 @default.
- W4380590971 hasAuthorship W4380590971A5062412552 @default.
- W4380590971 hasAuthorship W4380590971A5071696684 @default.
- W4380590971 hasBestOaLocation W43805909711 @default.
- W4380590971 hasConcept C10138342 @default.
- W4380590971 hasConcept C111919701 @default.
- W4380590971 hasConcept C118518473 @default.
- W4380590971 hasConcept C119857082 @default.
- W4380590971 hasConcept C120217122 @default.
- W4380590971 hasConcept C126343540 @default.
- W4380590971 hasConcept C127413603 @default.
- W4380590971 hasConcept C129361004 @default.
- W4380590971 hasConcept C144024400 @default.
- W4380590971 hasConcept C144133560 @default.
- W4380590971 hasConcept C149923435 @default.
- W4380590971 hasConcept C154945302 @default.
- W4380590971 hasConcept C166957645 @default.
- W4380590971 hasConcept C18903297 @default.
- W4380590971 hasConcept C202444582 @default.
- W4380590971 hasConcept C205649164 @default.
- W4380590971 hasConcept C2908647359 @default.
- W4380590971 hasConcept C33923547 @default.
- W4380590971 hasConcept C41008148 @default.
- W4380590971 hasConcept C54924851 @default.
- W4380590971 hasConcept C6557445 @default.
- W4380590971 hasConcept C66204764 @default.
- W4380590971 hasConcept C86803240 @default.
- W4380590971 hasConcept C88463610 @default.
- W4380590971 hasConcept C9652623 @default.
- W4380590971 hasConcept C98045186 @default.
- W4380590971 hasConceptScore W4380590971C10138342 @default.
- W4380590971 hasConceptScore W4380590971C111919701 @default.
- W4380590971 hasConceptScore W4380590971C118518473 @default.
- W4380590971 hasConceptScore W4380590971C119857082 @default.
- W4380590971 hasConceptScore W4380590971C120217122 @default.
- W4380590971 hasConceptScore W4380590971C126343540 @default.
- W4380590971 hasConceptScore W4380590971C127413603 @default.
- W4380590971 hasConceptScore W4380590971C129361004 @default.
- W4380590971 hasConceptScore W4380590971C144024400 @default.
- W4380590971 hasConceptScore W4380590971C144133560 @default.
- W4380590971 hasConceptScore W4380590971C149923435 @default.
- W4380590971 hasConceptScore W4380590971C154945302 @default.
- W4380590971 hasConceptScore W4380590971C166957645 @default.
- W4380590971 hasConceptScore W4380590971C18903297 @default.
- W4380590971 hasConceptScore W4380590971C202444582 @default.
- W4380590971 hasConceptScore W4380590971C205649164 @default.
- W4380590971 hasConceptScore W4380590971C2908647359 @default.
- W4380590971 hasConceptScore W4380590971C33923547 @default.
- W4380590971 hasConceptScore W4380590971C41008148 @default.
- W4380590971 hasConceptScore W4380590971C54924851 @default.
- W4380590971 hasConceptScore W4380590971C6557445 @default.
- W4380590971 hasConceptScore W4380590971C66204764 @default.
- W4380590971 hasConceptScore W4380590971C86803240 @default.
- W4380590971 hasConceptScore W4380590971C88463610 @default.
- W4380590971 hasConceptScore W4380590971C9652623 @default.
- W4380590971 hasConceptScore W4380590971C98045186 @default.
- W4380590971 hasLocation W43805909711 @default.
- W4380590971 hasOpenAccess W4380590971 @default.
- W4380590971 hasPrimaryLocation W43805909711 @default.
- W4380590971 hasRelatedWork W2810633852 @default.
- W4380590971 hasRelatedWork W3039703394 @default.
- W4380590971 hasRelatedWork W3154800126 @default.
- W4380590971 hasRelatedWork W4221121366 @default.
- W4380590971 hasRelatedWork W4282551453 @default.
- W4380590971 hasRelatedWork W4313065345 @default.
- W4380590971 hasRelatedWork W4320489071 @default.
- W4380590971 hasRelatedWork W4324121522 @default.
- W4380590971 hasRelatedWork W4360994530 @default.
- W4380590971 hasRelatedWork W2338053314 @default.
- W4380590971 isParatext "false" @default.
- W4380590971 isRetracted "false" @default.
- W4380590971 workType "article" @default.