Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380591085> ?p ?o ?g. }
- W4380591085 abstract "As a counterpoint to classical stochastic particle methods for linear diffusion equations, such as Langevin dynamics for the Fokker-Planck equation, we develop a deterministic particle method for the weighted porous medium equation and prove its convergence on bounded time intervals. This generalizes related work on blob methods for unweighted porous medium equations. From a numerical analysis perspective, our method has several advantages: it is meshfree, preserves the gradient flow structure of the underlying PDE, converges in arbitrary dimension, and captures the correct asymptotic behavior in simulations. The fact that our method succeeds in capturing the long time behavior of the weighted porous medium equation is significant from the perspective of related problems in quantization. Just as the Fokker-Planck equation provides a way to quantize a probability measure <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho overbar> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mover> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=false>¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=application/x-tex>bar {rho }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by evolving an empirical measure <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho Superscript upper N Baseline left-parenthesis t right-parenthesis equals StartFraction 1 Over upper N EndFraction sigma-summation Underscript i equals 1 Overscript upper N Endscripts delta Subscript upper X Sub Superscript i Subscript left-parenthesis t right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>N</mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>N</mml:mi> </mml:mfrac> <mml:munderover> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>N</mml:mi> </mml:munderover> <mml:msub> <mml:mi>δ<!-- δ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>X</mml:mi> <mml:mi>i</mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>rho ^N(t) = frac {1}{N} sum _{i=1}^N delta _{X^i(t)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> according to stochastic Langevin dynamics so that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho Superscript upper N Baseline left-parenthesis t right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mi>N</mml:mi> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>rho ^N(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> flows toward <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho overbar> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mover> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=false>¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=application/x-tex>bar {rho }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, our particle method provides a way to quantize <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho overbar> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mover> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=false>¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=application/x-tex>bar {rho }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> according to deterministic particle dynamics approximating the weighted porous medium equation. In this way, our method has natural applications to multi-agent coverage algorithms and sampling probability measures. A specific case of our method corresponds to <italic>confined</italic> mean-field dynamics of training a two-layer neural network for a radial basis activation function. From this perspective, our convergence result shows that, in the overparametrized regime and as the variance of the radial basis functions goes to zero, the continuum limit is given by the weighted porous medium equation. This generalizes previous results, which considered the case of a uniform data distribution, to the more general inhomogeneous setting. As a consequence of our convergence result, we identify conditions on the target function and data distribution for which convexity of the energy landscape emerges in the continuum limit." @default.
- W4380591085 created "2023-06-15" @default.
- W4380591085 creator A5023507368 @default.
- W4380591085 creator A5034305084 @default.
- W4380591085 creator A5047018985 @default.
- W4380591085 creator A5063797683 @default.
- W4380591085 date "2023-06-14" @default.
- W4380591085 modified "2023-10-16" @default.
- W4380591085 title "A blob method for inhomogeneous diffusion with applications to multi-agent control and sampling" @default.
- W4380591085 cites W1511694993 @default.
- W4380591085 cites W1576475658 @default.
- W4380591085 cites W1585160083 @default.
- W4380591085 cites W1788292158 @default.
- W4380591085 cites W1987588325 @default.
- W4380591085 cites W1989800311 @default.
- W4380591085 cites W1994521023 @default.
- W4380591085 cites W2011301426 @default.
- W4380591085 cites W2026015148 @default.
- W4380591085 cites W2031854460 @default.
- W4380591085 cites W2032254325 @default.
- W4380591085 cites W2032966561 @default.
- W4380591085 cites W2037468546 @default.
- W4380591085 cites W2039770548 @default.
- W4380591085 cites W2054723044 @default.
- W4380591085 cites W2061476011 @default.
- W4380591085 cites W2071048859 @default.
- W4380591085 cites W2074043571 @default.
- W4380591085 cites W2078393946 @default.
- W4380591085 cites W2088841695 @default.
- W4380591085 cites W2098870063 @default.
- W4380591085 cites W2116437383 @default.
- W4380591085 cites W2119761103 @default.
- W4380591085 cites W2120278281 @default.
- W4380591085 cites W2128097535 @default.
- W4380591085 cites W2138618054 @default.
- W4380591085 cites W2146292423 @default.
- W4380591085 cites W2167485994 @default.
- W4380591085 cites W2258351833 @default.
- W4380591085 cites W2339291042 @default.
- W4380591085 cites W2400592590 @default.
- W4380591085 cites W2407056134 @default.
- W4380591085 cites W2607021672 @default.
- W4380591085 cites W2805542307 @default.
- W4380591085 cites W2911525143 @default.
- W4380591085 cites W2962972468 @default.
- W4380591085 cites W2963093625 @default.
- W4380591085 cites W2963095610 @default.
- W4380591085 cites W2963172141 @default.
- W4380591085 cites W2963255288 @default.
- W4380591085 cites W2963362409 @default.
- W4380591085 cites W2963693734 @default.
- W4380591085 cites W2964011539 @default.
- W4380591085 cites W2964015695 @default.
- W4380591085 cites W2973214398 @default.
- W4380591085 cites W2982350206 @default.
- W4380591085 cites W3008003211 @default.
- W4380591085 cites W3010825589 @default.
- W4380591085 cites W3099945006 @default.
- W4380591085 cites W3101985406 @default.
- W4380591085 cites W3103204321 @default.
- W4380591085 cites W3107202146 @default.
- W4380591085 cites W3111778284 @default.
- W4380591085 cites W3140642854 @default.
- W4380591085 cites W3165787908 @default.
- W4380591085 cites W3175831284 @default.
- W4380591085 cites W3199046610 @default.
- W4380591085 cites W3199699850 @default.
- W4380591085 cites W3215612457 @default.
- W4380591085 cites W4253577938 @default.
- W4380591085 cites W4255839052 @default.
- W4380591085 cites W4286717651 @default.
- W4380591085 doi "https://doi.org/10.1090/mcom/3841" @default.
- W4380591085 hasPublicationYear "2023" @default.
- W4380591085 type Work @default.
- W4380591085 citedByCount "0" @default.
- W4380591085 crossrefType "journal-article" @default.
- W4380591085 hasAuthorship W4380591085A5023507368 @default.
- W4380591085 hasAuthorship W4380591085A5034305084 @default.
- W4380591085 hasAuthorship W4380591085A5047018985 @default.
- W4380591085 hasAuthorship W4380591085A5063797683 @default.
- W4380591085 hasConcept C11413529 @default.
- W4380591085 hasConcept C33923547 @default.
- W4380591085 hasConceptScore W4380591085C11413529 @default.
- W4380591085 hasConceptScore W4380591085C33923547 @default.
- W4380591085 hasFunder F4320306076 @default.
- W4380591085 hasLocation W43805910851 @default.
- W4380591085 hasOpenAccess W4380591085 @default.
- W4380591085 hasPrimaryLocation W43805910851 @default.
- W4380591085 hasRelatedWork W1587224694 @default.
- W4380591085 hasRelatedWork W1979597421 @default.
- W4380591085 hasRelatedWork W2007980826 @default.
- W4380591085 hasRelatedWork W2061531152 @default.
- W4380591085 hasRelatedWork W2069964982 @default.
- W4380591085 hasRelatedWork W2077600819 @default.
- W4380591085 hasRelatedWork W2965437270 @default.
- W4380591085 hasRelatedWork W3002753104 @default.
- W4380591085 hasRelatedWork W4225152035 @default.
- W4380591085 hasRelatedWork W4245490552 @default.
- W4380591085 isParatext "false" @default.
- W4380591085 isRetracted "false" @default.