Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380591192> ?p ?o ?g. }
- W4380591192 endingPage "1493" @default.
- W4380591192 startingPage "1486" @default.
- W4380591192 abstract "To develop a natural language processing system that solves both clinical concept extraction and relation extraction in a unified prompt-based machine reading comprehension (MRC) architecture with good generalizability for cross-institution applications.We formulate both clinical concept extraction and relation extraction using a unified prompt-based MRC architecture and explore state-of-the-art transformer models. We compare our MRC models with existing deep learning models for concept extraction and end-to-end relation extraction using 2 benchmark datasets developed by the 2018 National NLP Clinical Challenges (n2c2) challenge (medications and adverse drug events) and the 2022 n2c2 challenge (relations of social determinants of health [SDoH]). We also evaluate the transfer learning ability of the proposed MRC models in a cross-institution setting. We perform error analyses and examine how different prompting strategies affect the performance of MRC models.The proposed MRC models achieve state-of-the-art performance for clinical concept and relation extraction on the 2 benchmark datasets, outperforming previous non-MRC transformer models. GatorTron-MRC achieves the best strict and lenient F1-scores for concept extraction, outperforming previous deep learning models on the 2 datasets by 1%-3% and 0.7%-1.3%, respectively. For end-to-end relation extraction, GatorTron-MRC and BERT-MIMIC-MRC achieve the best F1-scores, outperforming previous deep learning models by 0.9%-2.4% and 10%-11%, respectively. For cross-institution evaluation, GatorTron-MRC outperforms traditional GatorTron by 6.4% and 16% for the 2 datasets, respectively. The proposed method is better at handling nested/overlapped concepts, extracting relations, and has good portability for cross-institute applications. Our clinical MRC package is publicly available at https://github.com/uf-hobi-informatics-lab/ClinicalTransformerMRC." @default.
- W4380591192 created "2023-06-15" @default.
- W4380591192 creator A5010253402 @default.
- W4380591192 creator A5011847644 @default.
- W4380591192 creator A5030951014 @default.
- W4380591192 creator A5067895217 @default.
- W4380591192 creator A5076610873 @default.
- W4380591192 creator A5086486425 @default.
- W4380591192 date "2023-06-14" @default.
- W4380591192 modified "2023-10-14" @default.
- W4380591192 title "Clinical concept and relation extraction using prompt-based machine reading comprehension" @default.
- W4380591192 cites W1504212872 @default.
- W4380591192 cites W2027233318 @default.
- W4380591192 cites W2039648273 @default.
- W4380591192 cites W2115570566 @default.
- W4380591192 cites W2116093010 @default.
- W4380591192 cites W2120538351 @default.
- W4380591192 cites W2122402213 @default.
- W4380591192 cites W2137407193 @default.
- W4380591192 cites W2168041406 @default.
- W4380591192 cites W2250539671 @default.
- W4380591192 cites W2396881363 @default.
- W4380591192 cites W2606576226 @default.
- W4380591192 cites W2619585391 @default.
- W4380591192 cites W2621075239 @default.
- W4380591192 cites W2725541287 @default.
- W4380591192 cites W2768488789 @default.
- W4380591192 cites W2770445088 @default.
- W4380591192 cites W2908038241 @default.
- W4380591192 cites W2910199035 @default.
- W4380591192 cites W2912324667 @default.
- W4380591192 cites W2944729956 @default.
- W4380591192 cites W2947596730 @default.
- W4380591192 cites W2947607756 @default.
- W4380591192 cites W2965373594 @default.
- W4380591192 cites W2970198438 @default.
- W4380591192 cites W2974256357 @default.
- W4380591192 cites W2979250794 @default.
- W4380591192 cites W2993961432 @default.
- W4380591192 cites W2996428491 @default.
- W4380591192 cites W3048179169 @default.
- W4380591192 cites W3095092693 @default.
- W4380591192 cites W3157876196 @default.
- W4380591192 cites W3198980621 @default.
- W4380591192 cites W3205270560 @default.
- W4380591192 cites W4287824654 @default.
- W4380591192 cites W4312220150 @default.
- W4380591192 cites W4321002059 @default.
- W4380591192 cites W4365458667 @default.
- W4380591192 doi "https://doi.org/10.1093/jamia/ocad107" @default.
- W4380591192 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37316988" @default.
- W4380591192 hasPublicationYear "2023" @default.
- W4380591192 type Work @default.
- W4380591192 citedByCount "0" @default.
- W4380591192 crossrefType "journal-article" @default.
- W4380591192 hasAuthorship W4380591192A5010253402 @default.
- W4380591192 hasAuthorship W4380591192A5011847644 @default.
- W4380591192 hasAuthorship W4380591192A5030951014 @default.
- W4380591192 hasAuthorship W4380591192A5067895217 @default.
- W4380591192 hasAuthorship W4380591192A5076610873 @default.
- W4380591192 hasAuthorship W4380591192A5086486425 @default.
- W4380591192 hasBestOaLocation W43805911922 @default.
- W4380591192 hasConcept C105795698 @default.
- W4380591192 hasConcept C108583219 @default.
- W4380591192 hasConcept C119857082 @default.
- W4380591192 hasConcept C121332964 @default.
- W4380591192 hasConcept C13280743 @default.
- W4380591192 hasConcept C150899416 @default.
- W4380591192 hasConcept C153604712 @default.
- W4380591192 hasConcept C154945302 @default.
- W4380591192 hasConcept C165801399 @default.
- W4380591192 hasConcept C185798385 @default.
- W4380591192 hasConcept C195807954 @default.
- W4380591192 hasConcept C204321447 @default.
- W4380591192 hasConcept C205649164 @default.
- W4380591192 hasConcept C27158222 @default.
- W4380591192 hasConcept C33923547 @default.
- W4380591192 hasConcept C41008148 @default.
- W4380591192 hasConcept C62520636 @default.
- W4380591192 hasConcept C66322947 @default.
- W4380591192 hasConceptScore W4380591192C105795698 @default.
- W4380591192 hasConceptScore W4380591192C108583219 @default.
- W4380591192 hasConceptScore W4380591192C119857082 @default.
- W4380591192 hasConceptScore W4380591192C121332964 @default.
- W4380591192 hasConceptScore W4380591192C13280743 @default.
- W4380591192 hasConceptScore W4380591192C150899416 @default.
- W4380591192 hasConceptScore W4380591192C153604712 @default.
- W4380591192 hasConceptScore W4380591192C154945302 @default.
- W4380591192 hasConceptScore W4380591192C165801399 @default.
- W4380591192 hasConceptScore W4380591192C185798385 @default.
- W4380591192 hasConceptScore W4380591192C195807954 @default.
- W4380591192 hasConceptScore W4380591192C204321447 @default.
- W4380591192 hasConceptScore W4380591192C205649164 @default.
- W4380591192 hasConceptScore W4380591192C27158222 @default.
- W4380591192 hasConceptScore W4380591192C33923547 @default.
- W4380591192 hasConceptScore W4380591192C41008148 @default.
- W4380591192 hasConceptScore W4380591192C62520636 @default.
- W4380591192 hasConceptScore W4380591192C66322947 @default.