Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380610660> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4380610660 endingPage "43" @default.
- W4380610660 startingPage "36" @default.
- W4380610660 abstract "Spam refers to all forms of bulk, unsolicited, unwelcome digital communication. Spam can be transmitted by text messages, phone calls, social media, or email, which is how it is frequently done. The rise of social media websites like Facebook, Twitter, YouTube, etc. has given spammers increased access to people. Most spam filtering solutions employ text-based algorithms. The fundamental difficulty is classification because it is a significant one. In this study, features are extracted from emails using classifications of rules. To automatically categorize emails, numerous systems have been created, a few of them include systemic decision-making. The use of Bayesian classifiers, networked neurons, support vector machines, and sample-based approaches. A sizable and time-consuming labelled dataset is required for the supervised model training phase. SVM and Naive Bayes, two supervised learning algorithms, outperform other models in terms of spam identification. It provides comprehensive explanations of these methods in addition to several likely areas for future research in spam filtering and detection. Because most spammers employ obfuscation techniques, the rules set need ongoing updating and improvement. Refinement is occasionally necessary, and in most situations, it is automated, so end users have less bother" @default.
- W4380610660 created "2023-06-15" @default.
- W4380610660 creator A5005975976 @default.
- W4380610660 creator A5008847988 @default.
- W4380610660 creator A5019239725 @default.
- W4380610660 creator A5069394869 @default.
- W4380610660 creator A5092164766 @default.
- W4380610660 date "2023-06-14" @default.
- W4380610660 modified "2023-09-27" @default.
- W4380610660 title "Using Machine Learning to Protect Social Media Accounts from Spam Emails" @default.
- W4380610660 doi "https://doi.org/10.46610/jbdtba.2023.v02i02.005" @default.
- W4380610660 hasPublicationYear "2023" @default.
- W4380610660 type Work @default.
- W4380610660 citedByCount "0" @default.
- W4380610660 crossrefType "journal-article" @default.
- W4380610660 hasAuthorship W4380610660A5005975976 @default.
- W4380610660 hasAuthorship W4380610660A5008847988 @default.
- W4380610660 hasAuthorship W4380610660A5019239725 @default.
- W4380610660 hasAuthorship W4380610660A5069394869 @default.
- W4380610660 hasAuthorship W4380610660A5092164766 @default.
- W4380610660 hasConcept C110875604 @default.
- W4380610660 hasConcept C116834253 @default.
- W4380610660 hasConcept C119857082 @default.
- W4380610660 hasConcept C12267149 @default.
- W4380610660 hasConcept C127735637 @default.
- W4380610660 hasConcept C136389625 @default.
- W4380610660 hasConcept C136764020 @default.
- W4380610660 hasConcept C138885662 @default.
- W4380610660 hasConcept C154945302 @default.
- W4380610660 hasConcept C157310412 @default.
- W4380610660 hasConcept C158955206 @default.
- W4380610660 hasConcept C177264268 @default.
- W4380610660 hasConcept C199360897 @default.
- W4380610660 hasConcept C2778707766 @default.
- W4380610660 hasConcept C41008148 @default.
- W4380610660 hasConcept C41895202 @default.
- W4380610660 hasConcept C50644808 @default.
- W4380610660 hasConcept C518677369 @default.
- W4380610660 hasConcept C52001869 @default.
- W4380610660 hasConcept C59822182 @default.
- W4380610660 hasConcept C86803240 @default.
- W4380610660 hasConcept C94124525 @default.
- W4380610660 hasConceptScore W4380610660C110875604 @default.
- W4380610660 hasConceptScore W4380610660C116834253 @default.
- W4380610660 hasConceptScore W4380610660C119857082 @default.
- W4380610660 hasConceptScore W4380610660C12267149 @default.
- W4380610660 hasConceptScore W4380610660C127735637 @default.
- W4380610660 hasConceptScore W4380610660C136389625 @default.
- W4380610660 hasConceptScore W4380610660C136764020 @default.
- W4380610660 hasConceptScore W4380610660C138885662 @default.
- W4380610660 hasConceptScore W4380610660C154945302 @default.
- W4380610660 hasConceptScore W4380610660C157310412 @default.
- W4380610660 hasConceptScore W4380610660C158955206 @default.
- W4380610660 hasConceptScore W4380610660C177264268 @default.
- W4380610660 hasConceptScore W4380610660C199360897 @default.
- W4380610660 hasConceptScore W4380610660C2778707766 @default.
- W4380610660 hasConceptScore W4380610660C41008148 @default.
- W4380610660 hasConceptScore W4380610660C41895202 @default.
- W4380610660 hasConceptScore W4380610660C50644808 @default.
- W4380610660 hasConceptScore W4380610660C518677369 @default.
- W4380610660 hasConceptScore W4380610660C52001869 @default.
- W4380610660 hasConceptScore W4380610660C59822182 @default.
- W4380610660 hasConceptScore W4380610660C86803240 @default.
- W4380610660 hasConceptScore W4380610660C94124525 @default.
- W4380610660 hasIssue "2" @default.
- W4380610660 hasLocation W43806106601 @default.
- W4380610660 hasOpenAccess W4380610660 @default.
- W4380610660 hasPrimaryLocation W43806106601 @default.
- W4380610660 hasRelatedWork W188180665 @default.
- W4380610660 hasRelatedWork W2888278675 @default.
- W4380610660 hasRelatedWork W2891503321 @default.
- W4380610660 hasRelatedWork W3105251098 @default.
- W4380610660 hasRelatedWork W3119113358 @default.
- W4380610660 hasRelatedWork W4238110273 @default.
- W4380610660 hasRelatedWork W4297820375 @default.
- W4380610660 hasRelatedWork W4361023004 @default.
- W4380610660 hasRelatedWork W4380610660 @default.
- W4380610660 hasRelatedWork W2342248537 @default.
- W4380610660 hasVolume "2" @default.
- W4380610660 isParatext "false" @default.
- W4380610660 isRetracted "false" @default.
- W4380610660 workType "article" @default.