Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380628074> ?p ?o ?g. }
- W4380628074 endingPage "e0287025" @default.
- W4380628074 startingPage "e0287025" @default.
- W4380628074 abstract "Pseudo-random number generators (PRNGs) are software algorithms generating a sequence of numbers approximating the properties of random numbers. They are critical components in many information systems that require unpredictable and nonarbitrary behaviors, such as parameter configuration in machine learning, gaming, cryptography, and simulation. A PRNG is commonly validated through a statistical test suite, such as NIST SP 800-22rev1a (NIST test suite), to evaluate its robustness and the randomness of the numbers. In this paper, we propose a Wasserstein distance-based generative adversarial network (WGAN) approach to generating PRNGs that fully satisfy the NIST test suite. In this approach, the existing Mersenne Twister (MT) PRNG is learned without implementing any mathematical programming code. We remove the dropout layers from the conventional WGAN network to learn random numbers distributed in the entire feature space because the nearly infinite amount of data can suppress the overfitting problems that occur without dropout layers. We conduct experimental studies to evaluate our learned pseudo-random number generator (LPRNG) by adopting cosine-function-based numbers with poor random number properties according to the NIST test suite as seed numbers. The experimental results show that our LPRNG successfully converted the sequence of seed numbers to random numbers that fully satisfy the NIST test suite. This study opens the way for the “democratization” of PRNGs through the end-to-end learning of conventional PRNGs, which means that PRNGs can be generated without deep mathematical know-how. Such tailor-made PRNGs will effectively enhance the unpredictability and nonarbitrariness of a wide range of information systems, even if the seed numbers can be revealed by reverse engineering. The experimental results also show that overfitting was observed after about 450,000 trials of learning, suggesting that there is an upper limit to the number of learning counts for a fixed-size neural network, even when learning with unlimited data." @default.
- W4380628074 created "2023-06-15" @default.
- W4380628074 creator A5004379494 @default.
- W4380628074 creator A5010147639 @default.
- W4380628074 creator A5054794415 @default.
- W4380628074 creator A5057947095 @default.
- W4380628074 date "2023-06-14" @default.
- W4380628074 modified "2023-09-24" @default.
- W4380628074 title "Learned pseudo-random number generator: WGAN-GP for generating statistically robust random numbers" @default.
- W4380628074 cites W1517403092 @default.
- W4380628074 cites W1975629594 @default.
- W4380628074 cites W1977032047 @default.
- W4380628074 cites W1989683026 @default.
- W4380628074 cites W1992313673 @default.
- W4380628074 cites W1997397052 @default.
- W4380628074 cites W1998671012 @default.
- W4380628074 cites W2002025080 @default.
- W4380628074 cites W2017155664 @default.
- W4380628074 cites W2029619539 @default.
- W4380628074 cites W2030891958 @default.
- W4380628074 cites W2032655419 @default.
- W4380628074 cites W2037834652 @default.
- W4380628074 cites W2041779618 @default.
- W4380628074 cites W2057913154 @default.
- W4380628074 cites W2078537410 @default.
- W4380628074 cites W2093310284 @default.
- W4380628074 cites W2094708800 @default.
- W4380628074 cites W2095595785 @default.
- W4380628074 cites W2104428894 @default.
- W4380628074 cites W220319917 @default.
- W4380628074 cites W2233401825 @default.
- W4380628074 cites W2461912595 @default.
- W4380628074 cites W2462918968 @default.
- W4380628074 cites W2593414223 @default.
- W4380628074 cites W2596927731 @default.
- W4380628074 cites W2805480962 @default.
- W4380628074 cites W2890329518 @default.
- W4380628074 cites W2900838173 @default.
- W4380628074 cites W2905016238 @default.
- W4380628074 cites W2910903288 @default.
- W4380628074 cites W2919115771 @default.
- W4380628074 cites W2928926952 @default.
- W4380628074 cites W2948687549 @default.
- W4380628074 cites W2962889562 @default.
- W4380628074 cites W2981678538 @default.
- W4380628074 cites W2983730736 @default.
- W4380628074 cites W3016464939 @default.
- W4380628074 cites W3098444421 @default.
- W4380628074 cites W3109388238 @default.
- W4380628074 cites W3122195885 @default.
- W4380628074 cites W3124518511 @default.
- W4380628074 cites W3129254285 @default.
- W4380628074 cites W3159472331 @default.
- W4380628074 cites W4200336462 @default.
- W4380628074 cites W4231916799 @default.
- W4380628074 cites W4240267682 @default.
- W4380628074 cites W4243494487 @default.
- W4380628074 doi "https://doi.org/10.1371/journal.pone.0287025" @default.
- W4380628074 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37315028" @default.
- W4380628074 hasPublicationYear "2023" @default.
- W4380628074 type Work @default.
- W4380628074 citedByCount "0" @default.
- W4380628074 crossrefType "journal-article" @default.
- W4380628074 hasAuthorship W4380628074A5004379494 @default.
- W4380628074 hasAuthorship W4380628074A5010147639 @default.
- W4380628074 hasAuthorship W4380628074A5054794415 @default.
- W4380628074 hasAuthorship W4380628074A5057947095 @default.
- W4380628074 hasBestOaLocation W43806280741 @default.
- W4380628074 hasConcept C105795698 @default.
- W4380628074 hasConcept C111219384 @default.
- W4380628074 hasConcept C11413529 @default.
- W4380628074 hasConcept C119857082 @default.
- W4380628074 hasConcept C125112378 @default.
- W4380628074 hasConcept C128942645 @default.
- W4380628074 hasConcept C140642157 @default.
- W4380628074 hasConcept C151552104 @default.
- W4380628074 hasConcept C152877465 @default.
- W4380628074 hasConcept C154945302 @default.
- W4380628074 hasConcept C201866948 @default.
- W4380628074 hasConcept C28490314 @default.
- W4380628074 hasConcept C33923547 @default.
- W4380628074 hasConcept C41008148 @default.
- W4380628074 hasConcept C80444323 @default.
- W4380628074 hasConcept C87007009 @default.
- W4380628074 hasConceptScore W4380628074C105795698 @default.
- W4380628074 hasConceptScore W4380628074C111219384 @default.
- W4380628074 hasConceptScore W4380628074C11413529 @default.
- W4380628074 hasConceptScore W4380628074C119857082 @default.
- W4380628074 hasConceptScore W4380628074C125112378 @default.
- W4380628074 hasConceptScore W4380628074C128942645 @default.
- W4380628074 hasConceptScore W4380628074C140642157 @default.
- W4380628074 hasConceptScore W4380628074C151552104 @default.
- W4380628074 hasConceptScore W4380628074C152877465 @default.
- W4380628074 hasConceptScore W4380628074C154945302 @default.
- W4380628074 hasConceptScore W4380628074C201866948 @default.
- W4380628074 hasConceptScore W4380628074C28490314 @default.
- W4380628074 hasConceptScore W4380628074C33923547 @default.
- W4380628074 hasConceptScore W4380628074C41008148 @default.