Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380628262> ?p ?o ?g. }
- W4380628262 endingPage "60266" @default.
- W4380628262 startingPage "60254" @default.
- W4380628262 abstract "In medical informatics, deep learning-based models are being used to predict and diagnose cardiovascular diseases (CVDs). These models can detect clinical signs, recognize phenotypes, and pick treatment methods for complicated illnesses. One approach to predicting CVDs is to collect a large dataset of patient medical records and use it to train a deep learning model. This study investigated CVDs for early prediction using deep learning-based regression analysis on a dataset of 2621 medical records from UAE hospitals, including age, symptoms, and CVD information. We propose a long short-term memory-based deep neural network for early prediction of CVDs by leveraging the regression analysis. It can be seen that the accuracy level of the diseases increased when they were simulated in pairs of one disease with another due to the overlapping symptoms. The study’s results suggest that coronary heart disease has been predicted with an 71.5% accuracy level, with 84.4% overlapping with Dyspnea; when accuracy measured with a combination of three conditions the accuracy was 86.7%, Dyspnea, Chest Pain, and Cyanosis, it has been increased up to 88.9%. Weakness, Fatigue, and Emptysis showed a value of 89.8%. In our proposed work, the combinations were Dyspnea, Chest Pain, Cyanosis, Weakness and Fatigue, Emptysis, and discomfort pressure in the chest have shown the ideal value of accuracy measured up to 90.6%, and with Fever, the accuracy is 91%. We show the effectiveness of our proposed method on several evaluation benchmarks." @default.
- W4380628262 created "2023-06-15" @default.
- W4380628262 creator A5005480057 @default.
- W4380628262 creator A5017345763 @default.
- W4380628262 creator A5017440430 @default.
- W4380628262 creator A5043912347 @default.
- W4380628262 creator A5058485751 @default.
- W4380628262 creator A5063304041 @default.
- W4380628262 creator A5072329375 @default.
- W4380628262 date "2023-01-01" @default.
- W4380628262 modified "2023-09-23" @default.
- W4380628262 title "Leveraging Regression Analysis to Predict Overlapping Symptoms of Cardiovascular Diseases" @default.
- W4380628262 cites W1793977955 @default.
- W4380628262 cites W182371826 @default.
- W4380628262 cites W1997228011 @default.
- W4380628262 cites W2128728535 @default.
- W4380628262 cites W2411021801 @default.
- W4380628262 cites W2582204396 @default.
- W4380628262 cites W2610135452 @default.
- W4380628262 cites W2784105493 @default.
- W4380628262 cites W2802701637 @default.
- W4380628262 cites W2912361013 @default.
- W4380628262 cites W2978707514 @default.
- W4380628262 cites W2997216942 @default.
- W4380628262 cites W3001828127 @default.
- W4380628262 cites W3012436782 @default.
- W4380628262 cites W3012687466 @default.
- W4380628262 cites W3019886164 @default.
- W4380628262 cites W3033523981 @default.
- W4380628262 cites W3038584219 @default.
- W4380628262 cites W3041799800 @default.
- W4380628262 cites W3084231313 @default.
- W4380628262 cites W3088658816 @default.
- W4380628262 cites W3101612813 @default.
- W4380628262 cites W3117705485 @default.
- W4380628262 cites W3121216533 @default.
- W4380628262 cites W3125892363 @default.
- W4380628262 cites W3127657277 @default.
- W4380628262 cites W3130354682 @default.
- W4380628262 cites W3170595385 @default.
- W4380628262 cites W3180674575 @default.
- W4380628262 cites W3189848341 @default.
- W4380628262 cites W3197217317 @default.
- W4380628262 cites W3198304075 @default.
- W4380628262 cites W4205802501 @default.
- W4380628262 cites W4210253752 @default.
- W4380628262 cites W4225612652 @default.
- W4380628262 cites W4228997710 @default.
- W4380628262 cites W4281696352 @default.
- W4380628262 cites W4282573126 @default.
- W4380628262 cites W4285733841 @default.
- W4380628262 cites W4290052608 @default.
- W4380628262 cites W4296818656 @default.
- W4380628262 cites W4309930769 @default.
- W4380628262 cites W4312140747 @default.
- W4380628262 cites W4313472870 @default.
- W4380628262 cites W4317438932 @default.
- W4380628262 cites W4321368741 @default.
- W4380628262 cites W4362676904 @default.
- W4380628262 doi "https://doi.org/10.1109/access.2023.3286311" @default.
- W4380628262 hasPublicationYear "2023" @default.
- W4380628262 type Work @default.
- W4380628262 citedByCount "0" @default.
- W4380628262 crossrefType "journal-article" @default.
- W4380628262 hasAuthorship W4380628262A5005480057 @default.
- W4380628262 hasAuthorship W4380628262A5017345763 @default.
- W4380628262 hasAuthorship W4380628262A5017440430 @default.
- W4380628262 hasAuthorship W4380628262A5043912347 @default.
- W4380628262 hasAuthorship W4380628262A5058485751 @default.
- W4380628262 hasAuthorship W4380628262A5063304041 @default.
- W4380628262 hasAuthorship W4380628262A5072329375 @default.
- W4380628262 hasBestOaLocation W43806282621 @default.
- W4380628262 hasConcept C105795698 @default.
- W4380628262 hasConcept C108583219 @default.
- W4380628262 hasConcept C119857082 @default.
- W4380628262 hasConcept C126322002 @default.
- W4380628262 hasConcept C141071460 @default.
- W4380628262 hasConcept C152877465 @default.
- W4380628262 hasConcept C154945302 @default.
- W4380628262 hasConcept C2778704086 @default.
- W4380628262 hasConcept C2779134260 @default.
- W4380628262 hasConcept C2780247198 @default.
- W4380628262 hasConcept C33923547 @default.
- W4380628262 hasConcept C41008148 @default.
- W4380628262 hasConcept C71924100 @default.
- W4380628262 hasConcept C83546350 @default.
- W4380628262 hasConceptScore W4380628262C105795698 @default.
- W4380628262 hasConceptScore W4380628262C108583219 @default.
- W4380628262 hasConceptScore W4380628262C119857082 @default.
- W4380628262 hasConceptScore W4380628262C126322002 @default.
- W4380628262 hasConceptScore W4380628262C141071460 @default.
- W4380628262 hasConceptScore W4380628262C152877465 @default.
- W4380628262 hasConceptScore W4380628262C154945302 @default.
- W4380628262 hasConceptScore W4380628262C2778704086 @default.
- W4380628262 hasConceptScore W4380628262C2779134260 @default.
- W4380628262 hasConceptScore W4380628262C2780247198 @default.
- W4380628262 hasConceptScore W4380628262C33923547 @default.
- W4380628262 hasConceptScore W4380628262C41008148 @default.