Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380631730> ?p ?o ?g. }
- W4380631730 endingPage "3074" @default.
- W4380631730 startingPage "3074" @default.
- W4380631730 abstract "The special issue “Tree species diversity mapping” presents research focused on the remote assessment of tree species diversity, using different sensor modalities and platforms. The special issue thereby recognizes that the continued loss of biodiversity poses a great challenge to humanity. Precise and regularly updated baseline information is urgently needed, which is difficult, using field inventories, especially on a large scale. On such scales, remote sensing methods excel. The work presented in the special issue demonstrates the great potential of Earth Observation (EO) for addressing knowledge gaps, as EO provides rich (spectral) information at high revisit frequencies and spatial resolutions. Many tree species can be distinguished well using optical data, in particular, when simultaneously leveraging both the spectral and temporal dimensions. A combination with other sensor modalities can further improve performance. EO approaches are, however, limited by the availability of high-quality reference information. This complicates the task as the collection of field data is labor and time-consuming. To mitigate this limiting factor, resources should be better shared amongst the community. The reliance on in situ data also highlights the need to focus research on the extraction of more permanent (i.e., species-inherent) properties. In this respect, we identify and discuss some inherent limitations of current approaches regarding tree species discrimination. To this end, we offer a more fundamental view on tree species classification based on physical principles. To provide both a summary of the special issue and some stimulating thoughts about possible future research directions, we structured the present communication into four parts. We first introduce the need for biodiversity information, followed by a summary of all 19 articles published within the special issue. The articles are ordered by the number of species investigated. Next, we provide a short summary of the main outputs. To stimulate further research and discussion within the scientific community, we conclude this communication by offering a more fundamental view on tree species classification based on EO data and its biophysical foundations. In particular, we purport that species can possibly be more robustly identified if we classify/identify them in the biophysical feature space and not in the spectral-temporal feature space. This involves the creation and inversion of so-called physically-based radiative transfer models (RTM), which take hyper/multispectral observations together with their observation geometry (as well as other priors), and project these into biophysical variables such as chlorophyll content and LAI etc. The perceived advantage of such an approach is that the generalizability (and scalability) of EO based classifications will increase, as the temporal trajectory of species in the biophysical parameter space is probably more robust compared to the sole analysis of spectral data, which—amongst other perturbing factors—also depend on site/time specific illumination geometry." @default.
- W4380631730 created "2023-06-15" @default.
- W4380631730 creator A5014728233 @default.
- W4380631730 creator A5060846410 @default.
- W4380631730 date "2023-06-12" @default.
- W4380631730 modified "2023-09-30" @default.
- W4380631730 title "Tree Species Diversity Mapping—Success Stories and Possible Ways Forward" @default.
- W4380631730 cites W1720178141 @default.
- W4380631730 cites W1822483748 @default.
- W4380631730 cites W1967621805 @default.
- W4380631730 cites W1978283906 @default.
- W4380631730 cites W1978915895 @default.
- W4380631730 cites W1997597499 @default.
- W4380631730 cites W2004553299 @default.
- W4380631730 cites W2010581112 @default.
- W4380631730 cites W2018732570 @default.
- W4380631730 cites W2025097322 @default.
- W4380631730 cites W2053373080 @default.
- W4380631730 cites W2054497277 @default.
- W4380631730 cites W2059217921 @default.
- W4380631730 cites W2069793096 @default.
- W4380631730 cites W2071885758 @default.
- W4380631730 cites W2101695001 @default.
- W4380631730 cites W2106013526 @default.
- W4380631730 cites W2152424523 @default.
- W4380631730 cites W2273708466 @default.
- W4380631730 cites W2291940322 @default.
- W4380631730 cites W2319094006 @default.
- W4380631730 cites W2322750819 @default.
- W4380631730 cites W2506799294 @default.
- W4380631730 cites W2515306179 @default.
- W4380631730 cites W2539651710 @default.
- W4380631730 cites W2586127133 @default.
- W4380631730 cites W2755249989 @default.
- W4380631730 cites W2793366794 @default.
- W4380631730 cites W2886835193 @default.
- W4380631730 cites W2903689264 @default.
- W4380631730 cites W2935706473 @default.
- W4380631730 cites W2945897702 @default.
- W4380631730 cites W2946482486 @default.
- W4380631730 cites W2988576146 @default.
- W4380631730 cites W2998891120 @default.
- W4380631730 cites W3007170129 @default.
- W4380631730 cites W3009071221 @default.
- W4380631730 cites W3040168800 @default.
- W4380631730 cites W3081775485 @default.
- W4380631730 cites W3087997209 @default.
- W4380631730 cites W3110414814 @default.
- W4380631730 cites W3111184439 @default.
- W4380631730 cites W3118328374 @default.
- W4380631730 cites W3121749275 @default.
- W4380631730 cites W3123593598 @default.
- W4380631730 cites W3127319645 @default.
- W4380631730 cites W3158891123 @default.
- W4380631730 cites W3180781590 @default.
- W4380631730 cites W3186328757 @default.
- W4380631730 cites W3197578749 @default.
- W4380631730 cites W3206165964 @default.
- W4380631730 cites W4200474535 @default.
- W4380631730 cites W4210633235 @default.
- W4380631730 cites W4281946776 @default.
- W4380631730 cites W4297908040 @default.
- W4380631730 cites W2170123744 @default.
- W4380631730 doi "https://doi.org/10.3390/rs15123074" @default.
- W4380631730 hasPublicationYear "2023" @default.
- W4380631730 type Work @default.
- W4380631730 citedByCount "0" @default.
- W4380631730 crossrefType "journal-article" @default.
- W4380631730 hasAuthorship W4380631730A5014728233 @default.
- W4380631730 hasAuthorship W4380631730A5060846410 @default.
- W4380631730 hasBestOaLocation W43806317301 @default.
- W4380631730 hasConcept C107826830 @default.
- W4380631730 hasConcept C113174947 @default.
- W4380631730 hasConcept C124101348 @default.
- W4380631730 hasConcept C134306372 @default.
- W4380631730 hasConcept C144024400 @default.
- W4380631730 hasConcept C202444582 @default.
- W4380631730 hasConcept C205649164 @default.
- W4380631730 hasConcept C2522767166 @default.
- W4380631730 hasConcept C2778755073 @default.
- W4380631730 hasConcept C2779903281 @default.
- W4380631730 hasConcept C33923547 @default.
- W4380631730 hasConcept C36289849 @default.
- W4380631730 hasConcept C39432304 @default.
- W4380631730 hasConcept C41008148 @default.
- W4380631730 hasConcept C58640448 @default.
- W4380631730 hasConcept C62649853 @default.
- W4380631730 hasConcept C9652623 @default.
- W4380631730 hasConceptScore W4380631730C107826830 @default.
- W4380631730 hasConceptScore W4380631730C113174947 @default.
- W4380631730 hasConceptScore W4380631730C124101348 @default.
- W4380631730 hasConceptScore W4380631730C134306372 @default.
- W4380631730 hasConceptScore W4380631730C144024400 @default.
- W4380631730 hasConceptScore W4380631730C202444582 @default.
- W4380631730 hasConceptScore W4380631730C205649164 @default.
- W4380631730 hasConceptScore W4380631730C2522767166 @default.
- W4380631730 hasConceptScore W4380631730C2778755073 @default.
- W4380631730 hasConceptScore W4380631730C2779903281 @default.