Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380632737> ?p ?o ?g. }
- W4380632737 endingPage "390" @default.
- W4380632737 startingPage "390" @default.
- W4380632737 abstract "Automatic modulation classification (AMC) is a signal processing technology used to identify the modulation type of unknown signals without prior information such as modulation parameters for drone communications. In recent years, deep learning (DL) has been widely used in AMC methods due to its powerful feature extraction ability. The significant performance of DL-based AMC methods is highly dependent on large amount of data. However, with the increasingly complex signal environment and the emergence of new signals, several recognition tasks have difficulty obtaining sufficient high-quality signals. To address this problem, we propose an AMC method based on a deep residual neural network with masked modeling (DRMM). Specifically, masked modeling is adopted to improve the performance of a deep neural network with limited signal samples. Both complex-valued and real-valued residual neural networks (ResNet) play an important role in extracting signal features for identification. Several typical experiments are conducted to evaluate our proposed DRMM-based AMC method on the RadioML 2016.10A dataset and a simulated dataset, and comparison experiments with existing AMC methods are also conducted. The simulation results illustrate that our proposed DRMM-based AMC method achieves better performance in the case of limited signal samples with low signal-to-noise ratio (SNR) than other existing methods." @default.
- W4380632737 created "2023-06-15" @default.
- W4380632737 creator A5027367677 @default.
- W4380632737 creator A5036456471 @default.
- W4380632737 creator A5038594863 @default.
- W4380632737 creator A5048082803 @default.
- W4380632737 creator A5049936379 @default.
- W4380632737 creator A5064213122 @default.
- W4380632737 creator A5092167439 @default.
- W4380632737 date "2023-06-12" @default.
- W4380632737 modified "2023-10-03" @default.
- W4380632737 title "Automatic Modulation Classification Using Deep Residual Neural Network with Masked Modeling for Wireless Communications" @default.
- W4380632737 cites W1992233579 @default.
- W4380632737 cites W2097436116 @default.
- W4380632737 cites W2111136196 @default.
- W4380632737 cites W2135123488 @default.
- W4380632737 cites W2194775991 @default.
- W4380632737 cites W2762017985 @default.
- W4380632737 cites W2773170971 @default.
- W4380632737 cites W2795621028 @default.
- W4380632737 cites W2803445619 @default.
- W4380632737 cites W2944313727 @default.
- W4380632737 cites W2998872171 @default.
- W4380632737 cites W3006541201 @default.
- W4380632737 cites W3007157394 @default.
- W4380632737 cites W3022311971 @default.
- W4380632737 cites W3023365694 @default.
- W4380632737 cites W3135666937 @default.
- W4380632737 cites W3159551017 @default.
- W4380632737 cites W3176231977 @default.
- W4380632737 cites W3176469059 @default.
- W4380632737 cites W3188022408 @default.
- W4380632737 cites W3194929648 @default.
- W4380632737 cites W3205802784 @default.
- W4380632737 cites W3205971195 @default.
- W4380632737 cites W4206998227 @default.
- W4380632737 cites W4225968213 @default.
- W4380632737 cites W4226117432 @default.
- W4380632737 cites W4226327168 @default.
- W4380632737 cites W4232120769 @default.
- W4380632737 cites W4239510810 @default.
- W4380632737 cites W4285127639 @default.
- W4380632737 cites W4285171423 @default.
- W4380632737 cites W4288391531 @default.
- W4380632737 cites W4289821916 @default.
- W4380632737 cites W4300468236 @default.
- W4380632737 cites W4309852602 @default.
- W4380632737 cites W4312424218 @default.
- W4380632737 cites W4312499543 @default.
- W4380632737 cites W4312804044 @default.
- W4380632737 cites W4321597251 @default.
- W4380632737 doi "https://doi.org/10.3390/drones7060390" @default.
- W4380632737 hasPublicationYear "2023" @default.
- W4380632737 type Work @default.
- W4380632737 citedByCount "2" @default.
- W4380632737 countsByYear W43806327372023 @default.
- W4380632737 crossrefType "journal-article" @default.
- W4380632737 hasAuthorship W4380632737A5027367677 @default.
- W4380632737 hasAuthorship W4380632737A5036456471 @default.
- W4380632737 hasAuthorship W4380632737A5038594863 @default.
- W4380632737 hasAuthorship W4380632737A5048082803 @default.
- W4380632737 hasAuthorship W4380632737A5049936379 @default.
- W4380632737 hasAuthorship W4380632737A5064213122 @default.
- W4380632737 hasAuthorship W4380632737A5092167439 @default.
- W4380632737 hasBestOaLocation W43806327371 @default.
- W4380632737 hasConcept C104267543 @default.
- W4380632737 hasConcept C107038049 @default.
- W4380632737 hasConcept C108583219 @default.
- W4380632737 hasConcept C11413529 @default.
- W4380632737 hasConcept C115961682 @default.
- W4380632737 hasConcept C123079801 @default.
- W4380632737 hasConcept C138885662 @default.
- W4380632737 hasConcept C153180895 @default.
- W4380632737 hasConcept C154945302 @default.
- W4380632737 hasConcept C155512373 @default.
- W4380632737 hasConcept C199360897 @default.
- W4380632737 hasConcept C2779843651 @default.
- W4380632737 hasConcept C41008148 @default.
- W4380632737 hasConcept C50644808 @default.
- W4380632737 hasConcept C52622490 @default.
- W4380632737 hasConcept C554190296 @default.
- W4380632737 hasConcept C76155785 @default.
- W4380632737 hasConcept C99498987 @default.
- W4380632737 hasConceptScore W4380632737C104267543 @default.
- W4380632737 hasConceptScore W4380632737C107038049 @default.
- W4380632737 hasConceptScore W4380632737C108583219 @default.
- W4380632737 hasConceptScore W4380632737C11413529 @default.
- W4380632737 hasConceptScore W4380632737C115961682 @default.
- W4380632737 hasConceptScore W4380632737C123079801 @default.
- W4380632737 hasConceptScore W4380632737C138885662 @default.
- W4380632737 hasConceptScore W4380632737C153180895 @default.
- W4380632737 hasConceptScore W4380632737C154945302 @default.
- W4380632737 hasConceptScore W4380632737C155512373 @default.
- W4380632737 hasConceptScore W4380632737C199360897 @default.
- W4380632737 hasConceptScore W4380632737C2779843651 @default.
- W4380632737 hasConceptScore W4380632737C41008148 @default.
- W4380632737 hasConceptScore W4380632737C50644808 @default.
- W4380632737 hasConceptScore W4380632737C52622490 @default.