Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380632956> ?p ?o ?g. }
- W4380632956 endingPage "5513" @default.
- W4380632956 startingPage "5513" @default.
- W4380632956 abstract "Stroke survivors often suffer from movement impairments that significantly affect their daily activities. The advancements in sensor technology and IoT have provided opportunities to automate the assessment and rehabilitation process for stroke survivors. This paper aims to provide a smart post-stroke severity assessment using AI-driven models. With the absence of labelled data and expert assessment, there is a research gap in providing virtual assessment, especially for unlabeled data. Inspired by the advances in consensus learning, in this paper, we propose a consensus clustering algorithm, PSA-NMF, that combines various clusterings into one united clustering, i.e., cluster consensus, to produce more stable and robust results compared to individual clustering. This paper is the first to investigate severity level using unsupervised learning and trunk displacement features in the frequency domain for post-stroke smart assessment. Two different methods of data collection from the U-limb datasets—the camera-based method (Vicon) and wearable sensor-based technology (Xsens)—were used. The trunk displacement method labelled each cluster based on the compensatory movements that stroke survivors employed for their daily activities. The proposed method uses the position and acceleration data in the frequency domain. Experimental results have demonstrated that the proposed clustering method that uses the post-stroke assessment approach increased the evaluation metrics such as accuracy and F-score. These findings can lead to a more effective and automated stroke rehabilitation process that is suitable for clinical settings, thus improving the quality of life for stroke survivors." @default.
- W4380632956 created "2023-06-15" @default.
- W4380632956 creator A5061219746 @default.
- W4380632956 creator A5079953122 @default.
- W4380632956 creator A5091627175 @default.
- W4380632956 date "2023-06-12" @default.
- W4380632956 modified "2023-09-30" @default.
- W4380632956 title "Automatic Post-Stroke Severity Assessment Using Novel Unsupervised Consensus Learning for Wearable and Camera-Based Sensor Datasets" @default.
- W4380632956 cites W1911839968 @default.
- W4380632956 cites W1967761844 @default.
- W4380632956 cites W1978348710 @default.
- W4380632956 cites W1989281612 @default.
- W4380632956 cites W1993137812 @default.
- W4380632956 cites W1997994200 @default.
- W4380632956 cites W2013996424 @default.
- W4380632956 cites W2030115514 @default.
- W4380632956 cites W2037572763 @default.
- W4380632956 cites W2046013276 @default.
- W4380632956 cites W2046025323 @default.
- W4380632956 cites W2055827505 @default.
- W4380632956 cites W2058839502 @default.
- W4380632956 cites W2066338981 @default.
- W4380632956 cites W2103142570 @default.
- W4380632956 cites W2109003100 @default.
- W4380632956 cites W2133355507 @default.
- W4380632956 cites W2135293213 @default.
- W4380632956 cites W2136313079 @default.
- W4380632956 cites W2142414716 @default.
- W4380632956 cites W2153956280 @default.
- W4380632956 cites W2158456734 @default.
- W4380632956 cites W2163901584 @default.
- W4380632956 cites W2169686358 @default.
- W4380632956 cites W2258968934 @default.
- W4380632956 cites W2288298981 @default.
- W4380632956 cites W2335920499 @default.
- W4380632956 cites W2343247142 @default.
- W4380632956 cites W2402297854 @default.
- W4380632956 cites W2470287356 @default.
- W4380632956 cites W2527738678 @default.
- W4380632956 cites W2534007666 @default.
- W4380632956 cites W2538292106 @default.
- W4380632956 cites W2619375121 @default.
- W4380632956 cites W2664267452 @default.
- W4380632956 cites W2743927120 @default.
- W4380632956 cites W2749830906 @default.
- W4380632956 cites W2755783609 @default.
- W4380632956 cites W2757698623 @default.
- W4380632956 cites W2765417352 @default.
- W4380632956 cites W2794850934 @default.
- W4380632956 cites W2801574653 @default.
- W4380632956 cites W2802211033 @default.
- W4380632956 cites W2897218246 @default.
- W4380632956 cites W2899403413 @default.
- W4380632956 cites W2899689011 @default.
- W4380632956 cites W2912148940 @default.
- W4380632956 cites W2913602685 @default.
- W4380632956 cites W2916512200 @default.
- W4380632956 cites W2916879374 @default.
- W4380632956 cites W2931759794 @default.
- W4380632956 cites W2948666881 @default.
- W4380632956 cites W2949109977 @default.
- W4380632956 cites W2968717862 @default.
- W4380632956 cites W2972527328 @default.
- W4380632956 cites W2983283189 @default.
- W4380632956 cites W2997454486 @default.
- W4380632956 cites W2999027068 @default.
- W4380632956 cites W3004244623 @default.
- W4380632956 cites W3009732007 @default.
- W4380632956 cites W3022547024 @default.
- W4380632956 cites W3024384408 @default.
- W4380632956 cites W3033548640 @default.
- W4380632956 cites W3049184091 @default.
- W4380632956 cites W3081404388 @default.
- W4380632956 cites W3082807353 @default.
- W4380632956 cites W3088587179 @default.
- W4380632956 cites W3088882399 @default.
- W4380632956 cites W3091925322 @default.
- W4380632956 cites W3093352713 @default.
- W4380632956 cites W3107066728 @default.
- W4380632956 cites W3124139391 @default.
- W4380632956 cites W3126681358 @default.
- W4380632956 cites W3126701990 @default.
- W4380632956 cites W3127772510 @default.
- W4380632956 cites W3132717321 @default.
- W4380632956 cites W3133018952 @default.
- W4380632956 cites W3133782269 @default.
- W4380632956 cites W3135923648 @default.
- W4380632956 cites W3166156066 @default.
- W4380632956 cites W3193715283 @default.
- W4380632956 cites W3202062758 @default.
- W4380632956 cites W3207763815 @default.
- W4380632956 cites W4205545720 @default.
- W4380632956 cites W4210359191 @default.
- W4380632956 cites W4212960215 @default.
- W4380632956 cites W4220969686 @default.
- W4380632956 cites W4226396566 @default.
- W4380632956 cites W4285326997 @default.
- W4380632956 cites W4293404332 @default.