Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380633039> ?p ?o ?g. }
- W4380633039 endingPage "3068" @default.
- W4380633039 startingPage "3068" @default.
- W4380633039 abstract "The leaf area index (LAI) is a crucial variable in climate, ecological, and land surface modeling. However, the estimation of the LAI from coarse-resolution remote sensing data can be affected by the spatial scaling bias, which arises from the nonlinearity of retrieval models and the heterogeneity of the land surface. This study provides an algorithm named Arithmetic Mean and Geometric Mean (AM–GM) to correct the spatial scaling bias. It is established based on negative logarithmic functions and avoids second-order stationarity. In this algorithm, relationships are derived between the scaling bias of LAI and the arithmetic and geometric means of directional gap probability for two commonly used remote sensing models, the Beer–Lambert law and a semi-empirical transfer function, respectively. According to the AM–GM algorithm, the expression representing the model nonlinearity is derived and utilized for the analysis of LAI scaling bias. Furthermore, the AM–GM algorithm is simplified by a linear relationship, which is constructed between two quantities related to the directional gap probability between two specific resolutions. Two scenes simulated by the LargE-Scale remote sensing data and image Simulation framework (LESS) model and three sites are used to evaluate the proposed algorithm and analyze the scaling bias of LAI. The validation results show that the AM–GM algorithm provides accurate correction of LAI scaling bias. The analyses based on the AM–GM algorithm demonstrate that the scaling bias of LAI increases with the increase in the LAI value, with stronger surface heterogeneity and coarser spatial resolution. The validation results of the simplified AM–GM algorithm demonstrate that at the Sud-Ouest site, the absolute value of the bias for the estimated LAI decreases from 0.10, 0.22, 0.29, and 0.31 to 0.04, 0.01, 0.04, and 0.05 at 200 m, 500 m, 1000 m, and 1500 m resolutions, respectively. In conclusion, the proposed algorithm is effective in the analysis and correction of the scaling bias for coarse-resolution LAI." @default.
- W4380633039 created "2023-06-15" @default.
- W4380633039 creator A5045630835 @default.
- W4380633039 creator A5063976189 @default.
- W4380633039 creator A5069103302 @default.
- W4380633039 creator A5074544873 @default.
- W4380633039 creator A5092167514 @default.
- W4380633039 date "2023-06-12" @default.
- W4380633039 modified "2023-10-18" @default.
- W4380633039 title "AM–GM Algorithm for Evaluating, Analyzing, and Correcting the Spatial Scaling Bias of the Leaf Area Index" @default.
- W4380633039 cites W1580877334 @default.
- W4380633039 cites W1965722003 @default.
- W4380633039 cites W1968962043 @default.
- W4380633039 cites W1995103915 @default.
- W4380633039 cites W2003719822 @default.
- W4380633039 cites W2013061102 @default.
- W4380633039 cites W2028584895 @default.
- W4380633039 cites W2030841267 @default.
- W4380633039 cites W2038137144 @default.
- W4380633039 cites W2039081811 @default.
- W4380633039 cites W2040547031 @default.
- W4380633039 cites W2060400475 @default.
- W4380633039 cites W2082691405 @default.
- W4380633039 cites W2088348477 @default.
- W4380633039 cites W2090626095 @default.
- W4380633039 cites W2094420085 @default.
- W4380633039 cites W2120493350 @default.
- W4380633039 cites W2123720514 @default.
- W4380633039 cites W2160794506 @default.
- W4380633039 cites W2166751965 @default.
- W4380633039 cites W2168499934 @default.
- W4380633039 cites W2277707132 @default.
- W4380633039 cites W2567650967 @default.
- W4380633039 cites W2789769116 @default.
- W4380633039 cites W2791341367 @default.
- W4380633039 cites W2903772126 @default.
- W4380633039 cites W2905511257 @default.
- W4380633039 cites W2912077313 @default.
- W4380633039 cites W2943316090 @default.
- W4380633039 cites W2944918755 @default.
- W4380633039 cites W2973497171 @default.
- W4380633039 cites W3001614872 @default.
- W4380633039 cites W3005425549 @default.
- W4380633039 cites W3011056298 @default.
- W4380633039 cites W3114791728 @default.
- W4380633039 cites W3133771980 @default.
- W4380633039 cites W3160159609 @default.
- W4380633039 cites W3172407780 @default.
- W4380633039 cites W3174075456 @default.
- W4380633039 cites W3209448809 @default.
- W4380633039 cites W4210347916 @default.
- W4380633039 cites W4220831280 @default.
- W4380633039 cites W4318499462 @default.
- W4380633039 doi "https://doi.org/10.3390/rs15123068" @default.
- W4380633039 hasPublicationYear "2023" @default.
- W4380633039 type Work @default.
- W4380633039 citedByCount "0" @default.
- W4380633039 crossrefType "journal-article" @default.
- W4380633039 hasAuthorship W4380633039A5045630835 @default.
- W4380633039 hasAuthorship W4380633039A5063976189 @default.
- W4380633039 hasAuthorship W4380633039A5069103302 @default.
- W4380633039 hasAuthorship W4380633039A5074544873 @default.
- W4380633039 hasAuthorship W4380633039A5092167514 @default.
- W4380633039 hasBestOaLocation W43806330391 @default.
- W4380633039 hasConcept C105795698 @default.
- W4380633039 hasConcept C11413529 @default.
- W4380633039 hasConcept C121332964 @default.
- W4380633039 hasConcept C127313418 @default.
- W4380633039 hasConcept C134306372 @default.
- W4380633039 hasConcept C154945302 @default.
- W4380633039 hasConcept C18903297 @default.
- W4380633039 hasConcept C205372480 @default.
- W4380633039 hasConcept C2524010 @default.
- W4380633039 hasConcept C25989453 @default.
- W4380633039 hasConcept C2778755073 @default.
- W4380633039 hasConcept C33923547 @default.
- W4380633039 hasConcept C39927690 @default.
- W4380633039 hasConcept C41008148 @default.
- W4380633039 hasConcept C62520636 @default.
- W4380633039 hasConcept C62649853 @default.
- W4380633039 hasConcept C86803240 @default.
- W4380633039 hasConcept C99844830 @default.
- W4380633039 hasConceptScore W4380633039C105795698 @default.
- W4380633039 hasConceptScore W4380633039C11413529 @default.
- W4380633039 hasConceptScore W4380633039C121332964 @default.
- W4380633039 hasConceptScore W4380633039C127313418 @default.
- W4380633039 hasConceptScore W4380633039C134306372 @default.
- W4380633039 hasConceptScore W4380633039C154945302 @default.
- W4380633039 hasConceptScore W4380633039C18903297 @default.
- W4380633039 hasConceptScore W4380633039C205372480 @default.
- W4380633039 hasConceptScore W4380633039C2524010 @default.
- W4380633039 hasConceptScore W4380633039C25989453 @default.
- W4380633039 hasConceptScore W4380633039C2778755073 @default.
- W4380633039 hasConceptScore W4380633039C33923547 @default.
- W4380633039 hasConceptScore W4380633039C39927690 @default.
- W4380633039 hasConceptScore W4380633039C41008148 @default.
- W4380633039 hasConceptScore W4380633039C62520636 @default.
- W4380633039 hasConceptScore W4380633039C62649853 @default.