Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380680508> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4380680508 abstract "Introduction: Despite the clinical usefulness of Coronary artery calcium score (CACS), it is difficult to use it as a routine practice due to its high cost and radiation hazard. Recently, several deep learning (DL) models to estimate CACS using 12-lead electrocardiography (ECG) have been introduced. However, their performance has not been compared among different patient groups. This study compared the performance of DL models to estimate CACS in different patient groups. Methods: The data of 5,427 patients who underwent both CT scan and 12-lead ECG at Korea University Anam Hospital from November 2012 to December 2021 was split into 80% training set and 20% test set. CNN-based DL model for predicting CACS ≥ 1 and CACS ≥ 100 using the raw ECG waveforms and several clinical factors as input was developed. Results: The DL model showed comparable performance for CACS estimation in the test dataset (area under the receiver operating characteristics curves [AUROCs] 0.77 for CACS ≥ 1 and 0.82 for CACS ≥ 100). The DL model showed better performance in patients with cardiovascular risks less than 3 compared to patients with cardiovascular risks more than 3 (AUROC 0.75 vs 0.71 for CACS ≥ 1, 0.77 vs 0.71 for CACS ≥ 100, Table 1). Among subgroups, the elderly (age > 65 year-old) showed the lowest performance (AUROC 0.72 for both CACS ≥ 1 and ≥ 100). Interestingly, the model performance predicting CACS ≥ 1 is better in patients with normal sinus rhythm, whereas the model performance predicting CACS ≥ 100 is better in patients with non-normal sinus rhythm. This suggests that normal ECG can better predict healthy condition and abnormal ECG can better predict pathological condition. Conclusions: The performance of CACS estimation DL model could depend on the patient's cardiovascular risk factors. When applying the DL model to actual clinical practice, it is necessary to consider the performance of the DL model for the patient group to be applied and to selectively apply the appropriate DL model." @default.
- W4380680508 created "2023-06-15" @default.
- W4380680508 creator A5002487238 @default.
- W4380680508 creator A5037704369 @default.
- W4380680508 creator A5040837657 @default.
- W4380680508 creator A5067905786 @default.
- W4380680508 creator A5086378314 @default.
- W4380680508 date "2022-11-08" @default.
- W4380680508 modified "2023-09-23" @default.
- W4380680508 title "Abstract 11190: Subgroup Comparison of Electrocardiogram Deep-Learning Model Performance for Estimating Coronary Artery Calcium Score" @default.
- W4380680508 doi "https://doi.org/10.1161/circ.146.suppl_1.11190" @default.
- W4380680508 hasPublicationYear "2022" @default.
- W4380680508 type Work @default.
- W4380680508 citedByCount "0" @default.
- W4380680508 crossrefType "journal-article" @default.
- W4380680508 hasAuthorship W4380680508A5002487238 @default.
- W4380680508 hasAuthorship W4380680508A5037704369 @default.
- W4380680508 hasAuthorship W4380680508A5040837657 @default.
- W4380680508 hasAuthorship W4380680508A5067905786 @default.
- W4380680508 hasAuthorship W4380680508A5086378314 @default.
- W4380680508 hasConcept C126322002 @default.
- W4380680508 hasConcept C164705383 @default.
- W4380680508 hasConcept C1862650 @default.
- W4380680508 hasConcept C207103383 @default.
- W4380680508 hasConcept C2775914520 @default.
- W4380680508 hasConcept C2778213512 @default.
- W4380680508 hasConcept C2779161974 @default.
- W4380680508 hasConcept C2779974597 @default.
- W4380680508 hasConcept C2780040984 @default.
- W4380680508 hasConcept C44249647 @default.
- W4380680508 hasConcept C58471807 @default.
- W4380680508 hasConcept C71924100 @default.
- W4380680508 hasConceptScore W4380680508C126322002 @default.
- W4380680508 hasConceptScore W4380680508C164705383 @default.
- W4380680508 hasConceptScore W4380680508C1862650 @default.
- W4380680508 hasConceptScore W4380680508C207103383 @default.
- W4380680508 hasConceptScore W4380680508C2775914520 @default.
- W4380680508 hasConceptScore W4380680508C2778213512 @default.
- W4380680508 hasConceptScore W4380680508C2779161974 @default.
- W4380680508 hasConceptScore W4380680508C2779974597 @default.
- W4380680508 hasConceptScore W4380680508C2780040984 @default.
- W4380680508 hasConceptScore W4380680508C44249647 @default.
- W4380680508 hasConceptScore W4380680508C58471807 @default.
- W4380680508 hasConceptScore W4380680508C71924100 @default.
- W4380680508 hasIssue "Suppl_1" @default.
- W4380680508 hasLocation W43806805081 @default.
- W4380680508 hasOpenAccess W4380680508 @default.
- W4380680508 hasPrimaryLocation W43806805081 @default.
- W4380680508 hasRelatedWork W2038961765 @default.
- W4380680508 hasRelatedWork W2113169991 @default.
- W4380680508 hasRelatedWork W2304633692 @default.
- W4380680508 hasRelatedWork W2361542028 @default.
- W4380680508 hasRelatedWork W2385890854 @default.
- W4380680508 hasRelatedWork W2414320482 @default.
- W4380680508 hasRelatedWork W2594251074 @default.
- W4380680508 hasRelatedWork W2887231320 @default.
- W4380680508 hasRelatedWork W2945567763 @default.
- W4380680508 hasRelatedWork W2966609368 @default.
- W4380680508 hasVolume "146" @default.
- W4380680508 isParatext "false" @default.
- W4380680508 isRetracted "false" @default.
- W4380680508 workType "article" @default.