Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380682492> ?p ?o ?g. }
- W4380682492 endingPage "13520" @default.
- W4380682492 startingPage "13491" @default.
- W4380682492 abstract "<abstract><p>The Internet of Things (IoT) is a rapidly evolving technology with a wide range of potential applications, but the security of IoT networks remains a major concern. The existing system needs improvement in detecting intrusions in IoT networks. Several researchers have focused on intrusion detection systems (IDS) that address only one layer of the three-layered IoT architecture, which limits their effectiveness in detecting attacks across the entire network. To address these limitations, this paper proposes an intelligent IDS for IoT networks based on deep learning algorithms. The proposed model consists of a recurrent neural network and gated recurrent units (RNN-GRU), which can classify attacks across the physical, network, and application layers. The proposed model is trained and tested using the ToN-IoT dataset, specifically collected for a three-layered IoT system, and includes new types of attacks compared to other publicly available datasets. The performance analysis of the proposed model was carried out by a number of evaluation metrics such as accuracy, precision, recall, and F1-measure. Two optimization techniques, Adam and Adamax, were applied in the evaluation process of the model, and the Adam performance was found to be optimal. Moreover, the proposed model was compared with various advanced deep learning (DL) and traditional machine learning (ML) techniques. The results show that the proposed system achieves an accuracy of 99% for network flow datasets and 98% for application layer datasets, demonstrating its superiority over previous IDS models.</p></abstract>" @default.
- W4380682492 created "2023-06-15" @default.
- W4380682492 creator A5009770181 @default.
- W4380682492 creator A5017797877 @default.
- W4380682492 creator A5026392286 @default.
- W4380682492 creator A5029347215 @default.
- W4380682492 creator A5044414618 @default.
- W4380682492 creator A5045573738 @default.
- W4380682492 creator A5055710719 @default.
- W4380682492 creator A5075864023 @default.
- W4380682492 creator A5082362331 @default.
- W4380682492 date "2023-01-01" @default.
- W4380682492 modified "2023-10-17" @default.
- W4380682492 title "A hybrid deep learning-based intrusion detection system for IoT networks" @default.
- W4380682492 cites W1978130745 @default.
- W4380682492 cites W2006241329 @default.
- W4380682492 cites W2029732253 @default.
- W4380682492 cites W2132791018 @default.
- W4380682492 cites W2289218694 @default.
- W4380682492 cites W2508433864 @default.
- W4380682492 cites W2559341072 @default.
- W4380682492 cites W2575270978 @default.
- W4380682492 cites W2606537796 @default.
- W4380682492 cites W2761800654 @default.
- W4380682492 cites W2797763839 @default.
- W4380682492 cites W2800306076 @default.
- W4380682492 cites W2800788706 @default.
- W4380682492 cites W2888430824 @default.
- W4380682492 cites W2891111645 @default.
- W4380682492 cites W2986807064 @default.
- W4380682492 cites W2990268365 @default.
- W4380682492 cites W2991140181 @default.
- W4380682492 cites W2991435551 @default.
- W4380682492 cites W3009422166 @default.
- W4380682492 cites W3012067338 @default.
- W4380682492 cites W3033403042 @default.
- W4380682492 cites W3046333158 @default.
- W4380682492 cites W3048053677 @default.
- W4380682492 cites W3081104342 @default.
- W4380682492 cites W3085955590 @default.
- W4380682492 cites W3088578737 @default.
- W4380682492 cites W3091534692 @default.
- W4380682492 cites W3103595556 @default.
- W4380682492 cites W3108814293 @default.
- W4380682492 cites W3151784567 @default.
- W4380682492 cites W3189329220 @default.
- W4380682492 cites W3193630181 @default.
- W4380682492 cites W4211134207 @default.
- W4380682492 cites W4213311783 @default.
- W4380682492 cites W4223640162 @default.
- W4380682492 cites W4280523910 @default.
- W4380682492 cites W4285106051 @default.
- W4380682492 cites W4287890928 @default.
- W4380682492 cites W4293206041 @default.
- W4380682492 cites W4297792821 @default.
- W4380682492 cites W4307861851 @default.
- W4380682492 cites W4309545309 @default.
- W4380682492 cites W4312204616 @default.
- W4380682492 doi "https://doi.org/10.3934/mbe.2023602" @default.
- W4380682492 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37679099" @default.
- W4380682492 hasPublicationYear "2023" @default.
- W4380682492 type Work @default.
- W4380682492 citedByCount "2" @default.
- W4380682492 countsByYear W43806824922023 @default.
- W4380682492 crossrefType "journal-article" @default.
- W4380682492 hasAuthorship W4380682492A5009770181 @default.
- W4380682492 hasAuthorship W4380682492A5017797877 @default.
- W4380682492 hasAuthorship W4380682492A5026392286 @default.
- W4380682492 hasAuthorship W4380682492A5029347215 @default.
- W4380682492 hasAuthorship W4380682492A5044414618 @default.
- W4380682492 hasAuthorship W4380682492A5045573738 @default.
- W4380682492 hasAuthorship W4380682492A5055710719 @default.
- W4380682492 hasAuthorship W4380682492A5075864023 @default.
- W4380682492 hasAuthorship W4380682492A5082362331 @default.
- W4380682492 hasBestOaLocation W43806824921 @default.
- W4380682492 hasConcept C108583219 @default.
- W4380682492 hasConcept C111919701 @default.
- W4380682492 hasConcept C119857082 @default.
- W4380682492 hasConcept C124101348 @default.
- W4380682492 hasConcept C149635348 @default.
- W4380682492 hasConcept C154945302 @default.
- W4380682492 hasConcept C178790620 @default.
- W4380682492 hasConcept C185592680 @default.
- W4380682492 hasConcept C2779227376 @default.
- W4380682492 hasConcept C35525427 @default.
- W4380682492 hasConcept C41008148 @default.
- W4380682492 hasConcept C50644808 @default.
- W4380682492 hasConcept C81860439 @default.
- W4380682492 hasConcept C98045186 @default.
- W4380682492 hasConceptScore W4380682492C108583219 @default.
- W4380682492 hasConceptScore W4380682492C111919701 @default.
- W4380682492 hasConceptScore W4380682492C119857082 @default.
- W4380682492 hasConceptScore W4380682492C124101348 @default.
- W4380682492 hasConceptScore W4380682492C149635348 @default.
- W4380682492 hasConceptScore W4380682492C154945302 @default.
- W4380682492 hasConceptScore W4380682492C178790620 @default.
- W4380682492 hasConceptScore W4380682492C185592680 @default.
- W4380682492 hasConceptScore W4380682492C2779227376 @default.