Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380684018> ?p ?o ?g. }
- W4380684018 endingPage "109688" @default.
- W4380684018 startingPage "109688" @default.
- W4380684018 abstract "Due to the inherent characteristics of redundancy in natural images, sparsity and low-rank approximation can be applied to image processing tasks. However, most existing denoising algorithms based on low-rank approximation are pron to arise over-smoothing problem, resulting in a loss of details and structures. In this paper, a windowed variation kernel Wiener filter (WV-KWF) image denoising algorithm based on low-rank approximation is proposed. We first estimate the reference image of kernel Wiener filtering by using a low-rank approximation method. Then a windowed inherent variation is used to describe image local gradient information, and a shape-aware kernel function is introduced to describe image local complex structures. Finally the optimal kernel Wiener filter approach can be obtained for image denoising while preserving edges. The experimental results show that compared with the existing state-of-the-art methods, our proposed method is more competitive in maintaining image structures and removing noises both subjectively and objectively." @default.
- W4380684018 created "2023-06-15" @default.
- W4380684018 creator A5019824207 @default.
- W4380684018 creator A5058254249 @default.
- W4380684018 creator A5076614871 @default.
- W4380684018 creator A5079888255 @default.
- W4380684018 date "2023-12-01" @default.
- W4380684018 modified "2023-09-23" @default.
- W4380684018 title "Windowed variation kernel Wiener filter model for image denoising with edge preservation" @default.
- W4380684018 cites W1590245106 @default.
- W4380684018 cites W1828225289 @default.
- W4380684018 cites W1979369422 @default.
- W4380684018 cites W1993296994 @default.
- W4380684018 cites W2014311222 @default.
- W4380684018 cites W2019831904 @default.
- W4380684018 cites W2021966702 @default.
- W4380684018 cites W2038457848 @default.
- W4380684018 cites W2040334833 @default.
- W4380684018 cites W2040378863 @default.
- W4380684018 cites W2056370875 @default.
- W4380684018 cites W2065533005 @default.
- W4380684018 cites W2090571884 @default.
- W4380684018 cites W2103972604 @default.
- W4380684018 cites W2108763700 @default.
- W4380684018 cites W2110611514 @default.
- W4380684018 cites W2113945798 @default.
- W4380684018 cites W2136396015 @default.
- W4380684018 cites W2141957843 @default.
- W4380684018 cites W2335197470 @default.
- W4380684018 cites W2443624995 @default.
- W4380684018 cites W2505029951 @default.
- W4380684018 cites W2508457857 @default.
- W4380684018 cites W2613645387 @default.
- W4380684018 cites W2726320097 @default.
- W4380684018 cites W2773415061 @default.
- W4380684018 cites W2776327255 @default.
- W4380684018 cites W2806994641 @default.
- W4380684018 cites W2808453325 @default.
- W4380684018 cites W2964046397 @default.
- W4380684018 cites W2964135133 @default.
- W4380684018 cites W2995679912 @default.
- W4380684018 cites W2997388461 @default.
- W4380684018 cites W3012002796 @default.
- W4380684018 cites W3081108418 @default.
- W4380684018 cites W3084306245 @default.
- W4380684018 cites W3117418830 @default.
- W4380684018 cites W3137491246 @default.
- W4380684018 cites W3172689673 @default.
- W4380684018 doi "https://doi.org/10.1016/j.optlastec.2023.109688" @default.
- W4380684018 hasPublicationYear "2023" @default.
- W4380684018 type Work @default.
- W4380684018 citedByCount "0" @default.
- W4380684018 crossrefType "journal-article" @default.
- W4380684018 hasAuthorship W4380684018A5019824207 @default.
- W4380684018 hasAuthorship W4380684018A5058254249 @default.
- W4380684018 hasAuthorship W4380684018A5076614871 @default.
- W4380684018 hasAuthorship W4380684018A5079888255 @default.
- W4380684018 hasConcept C101453961 @default.
- W4380684018 hasConcept C106131492 @default.
- W4380684018 hasConcept C11413529 @default.
- W4380684018 hasConcept C114614502 @default.
- W4380684018 hasConcept C115961682 @default.
- W4380684018 hasConcept C122280245 @default.
- W4380684018 hasConcept C12267149 @default.
- W4380684018 hasConcept C141651230 @default.
- W4380684018 hasConcept C153180895 @default.
- W4380684018 hasConcept C154945302 @default.
- W4380684018 hasConcept C156140930 @default.
- W4380684018 hasConcept C15652857 @default.
- W4380684018 hasConcept C163294075 @default.
- W4380684018 hasConcept C174576160 @default.
- W4380684018 hasConcept C18537770 @default.
- W4380684018 hasConcept C27406209 @default.
- W4380684018 hasConcept C2983327147 @default.
- W4380684018 hasConcept C30044814 @default.
- W4380684018 hasConcept C31972630 @default.
- W4380684018 hasConcept C33923547 @default.
- W4380684018 hasConcept C3770464 @default.
- W4380684018 hasConcept C41008148 @default.
- W4380684018 hasConcept C74193536 @default.
- W4380684018 hasConcept C75866337 @default.
- W4380684018 hasConceptScore W4380684018C101453961 @default.
- W4380684018 hasConceptScore W4380684018C106131492 @default.
- W4380684018 hasConceptScore W4380684018C11413529 @default.
- W4380684018 hasConceptScore W4380684018C114614502 @default.
- W4380684018 hasConceptScore W4380684018C115961682 @default.
- W4380684018 hasConceptScore W4380684018C122280245 @default.
- W4380684018 hasConceptScore W4380684018C12267149 @default.
- W4380684018 hasConceptScore W4380684018C141651230 @default.
- W4380684018 hasConceptScore W4380684018C153180895 @default.
- W4380684018 hasConceptScore W4380684018C154945302 @default.
- W4380684018 hasConceptScore W4380684018C156140930 @default.
- W4380684018 hasConceptScore W4380684018C15652857 @default.
- W4380684018 hasConceptScore W4380684018C163294075 @default.
- W4380684018 hasConceptScore W4380684018C174576160 @default.
- W4380684018 hasConceptScore W4380684018C18537770 @default.
- W4380684018 hasConceptScore W4380684018C27406209 @default.
- W4380684018 hasConceptScore W4380684018C2983327147 @default.