Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380684509> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4380684509 endingPage "27" @default.
- W4380684509 startingPage "14" @default.
- W4380684509 abstract "This article showcases significant progress in solving two renowned problems in the calculus of series: the Flint Hills and Cookson Hills series. For almost twenty years, a long-standing question has remained unanswered in regard to their convergence. Mainly, proving the convergence of the Flint Hills series would significantly impact the redefinition of the upper bound for the irrationality measure of the number π. One of the results presented in this article is that the Flint Hills series converges to 30.3144... which leads to a redefinition of the upper bound for the irrationality measure of π, specifically μ(π)≤ 2.5. This work proposes a transformation that solves the mystery of the Flint Hills and Cookson Hills series. It is based on a summation formula developed by mathematicians Adamchik and Srivastava. By leveraging a specialized series supported by the Riemann zeta function, this approach successfully transforms the original Flint Hills and Cookson Hills series into novel convergent versions with unique significance. The resulting sequences linked to these series are positive and bounded and satisfy convergence. Moreover, this article extends the Flint Hills series when the cosecant function has an arbitrary complex argument n+iβ, with i=√(-1), establishing a new series representation based on the polylogarithm 〖Li〗_3 (e^i2k), with k=1,2,3,…, e the Euler’s number, which bears resemblance to the famous integral of the Bose-Einstein distribution as a relevant finding. This is a never-seen-before link between the Flint Hills series and polylogarithms. Furthermore, a relationship between the Apéry constant and the Flint Hills and Cookson Hills series has been established. This article presents a significant breakthrough in the calculus of series by introducing a new method based on the Riemann Zeta function and logarithmical expressions derived from the Adamchik and Srivastava summation formula. The novel approach extends the analysis of convergence criteria for series, addressing ambiguous cases characterized by abrupt jumps. Thus, the Flint Hills series converges to 30.3144... and the Cookson Hills series to 42.9949... as proved in this article." @default.
- W4380684509 created "2023-06-15" @default.
- W4380684509 creator A5092171175 @default.
- W4380684509 date "2023-06-14" @default.
- W4380684509 modified "2023-09-30" @default.
- W4380684509 title "Finding on Convergence of the Flint Hills and Cookson Hills Series based on a Summation Formula of Adamchik and Srivastava involving the Riemann Zeta Function" @default.
- W4380684509 cites W2002634018 @default.
- W4380684509 cites W2026614188 @default.
- W4380684509 cites W2299088384 @default.
- W4380684509 doi "https://doi.org/10.46300/91019.2023.10.3" @default.
- W4380684509 hasPublicationYear "2023" @default.
- W4380684509 type Work @default.
- W4380684509 citedByCount "0" @default.
- W4380684509 crossrefType "journal-article" @default.
- W4380684509 hasAuthorship W4380684509A5092171175 @default.
- W4380684509 hasBestOaLocation W43806845091 @default.
- W4380684509 hasConcept C1115519 @default.
- W4380684509 hasConcept C127313418 @default.
- W4380684509 hasConcept C134306372 @default.
- W4380684509 hasConcept C143724316 @default.
- W4380684509 hasConcept C151730666 @default.
- W4380684509 hasConcept C162324750 @default.
- W4380684509 hasConcept C199343813 @default.
- W4380684509 hasConcept C202444582 @default.
- W4380684509 hasConcept C2777303404 @default.
- W4380684509 hasConcept C2777686260 @default.
- W4380684509 hasConcept C32929806 @default.
- W4380684509 hasConcept C33923547 @default.
- W4380684509 hasConcept C35235930 @default.
- W4380684509 hasConcept C50522688 @default.
- W4380684509 hasConcept C71924100 @default.
- W4380684509 hasConcept C73905626 @default.
- W4380684509 hasConceptScore W4380684509C1115519 @default.
- W4380684509 hasConceptScore W4380684509C127313418 @default.
- W4380684509 hasConceptScore W4380684509C134306372 @default.
- W4380684509 hasConceptScore W4380684509C143724316 @default.
- W4380684509 hasConceptScore W4380684509C151730666 @default.
- W4380684509 hasConceptScore W4380684509C162324750 @default.
- W4380684509 hasConceptScore W4380684509C199343813 @default.
- W4380684509 hasConceptScore W4380684509C202444582 @default.
- W4380684509 hasConceptScore W4380684509C2777303404 @default.
- W4380684509 hasConceptScore W4380684509C2777686260 @default.
- W4380684509 hasConceptScore W4380684509C32929806 @default.
- W4380684509 hasConceptScore W4380684509C33923547 @default.
- W4380684509 hasConceptScore W4380684509C35235930 @default.
- W4380684509 hasConceptScore W4380684509C50522688 @default.
- W4380684509 hasConceptScore W4380684509C71924100 @default.
- W4380684509 hasConceptScore W4380684509C73905626 @default.
- W4380684509 hasLocation W43806845091 @default.
- W4380684509 hasOpenAccess W4380684509 @default.
- W4380684509 hasPrimaryLocation W43806845091 @default.
- W4380684509 hasRelatedWork W2017747325 @default.
- W4380684509 hasRelatedWork W2044454673 @default.
- W4380684509 hasRelatedWork W2064475287 @default.
- W4380684509 hasRelatedWork W2108618157 @default.
- W4380684509 hasRelatedWork W2118566691 @default.
- W4380684509 hasRelatedWork W2370157046 @default.
- W4380684509 hasRelatedWork W2382928100 @default.
- W4380684509 hasRelatedWork W2384104162 @default.
- W4380684509 hasRelatedWork W2891064742 @default.
- W4380684509 hasRelatedWork W2933973019 @default.
- W4380684509 hasVolume "10" @default.
- W4380684509 isParatext "false" @default.
- W4380684509 isRetracted "false" @default.
- W4380684509 workType "article" @default.