Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380686346> ?p ?o ?g. }
- W4380686346 endingPage "946" @default.
- W4380686346 startingPage "946" @default.
- W4380686346 abstract "Non-specific low back pain (NSLBP) is a significant and pervasive public health issue in contemporary society. Despite the widespread prevalence of NSLBP, our understanding of its underlying causes, as well as our capacity to provide effective treatments, remains limited due to the high diversity in the population that does not respond to generic treatments. Clustering the NSLBP population based on shared characteristics offers a potential solution for developing personalized interventions. However, the complexity of NSLBP and the reliance on subjective categorical data in previous attempts present challenges in achieving reliable and clinically meaningful clusters. This study aims to explore the influence and importance of objective, continuous variables related to NSLBP and how to use these variables effectively to facilitate the clustering of NSLBP patients into meaningful subgroups. Data were acquired from 46 subjects who performed six simple movement tasks (back extension, back flexion, lateral trunk flexion right, lateral trunk flexion left, trunk rotation right, and trunk rotation left) at two different speeds (maximum and preferred). High-density electromyography (HD EMG) data from the lower back region were acquired, jointly with motion capture data, using passive reflective markers on the subject's body and clusters of markers on the subject's spine. An exploratory analysis was conducted using a deep neural network and factor analysis. Based on selected variables, various models were trained to classify individuals as healthy or having NSLBP in order to assess the importance of different variables. The models were trained using different subsets of data, including all variables, only anthropometric data (e.g., age, BMI, height, weight, and sex), only biomechanical data (e.g., shoulder and lower back movement), only neuromuscular data (e.g., HD EMG activity), or only balance-related data. The models achieved high accuracy in categorizing individuals as healthy or having NSLBP (full model: 93.30%, anthropometric model: 94.40%, biomechanical model: 84.47%, neuromuscular model: 88.07%, and balance model: 74.73%). Factor analysis revealed that individuals with NSLBP exhibited different movement patterns to healthy individuals, characterized by slower and more rigid movements. Anthropometric variables (age, sex, and BMI) were significantly correlated with NSLBP components. In conclusion, different data types, such as body measurements, movement patterns, and neuromuscular activity, can provide valuable information for identifying individuals with NSLBP. To gain a comprehensive understanding of NSLBP, it is crucial to investigate the main domains influencing its prognosis as a cohesive unit rather than studying them in isolation. Simplifying the conditions for acquiring dynamic data is recommended to reduce data complexity, and using back flexion and trunk rotation as effective options should be further explored." @default.
- W4380686346 created "2023-06-15" @default.
- W4380686346 creator A5020722078 @default.
- W4380686346 creator A5043603349 @default.
- W4380686346 creator A5043672014 @default.
- W4380686346 creator A5047081177 @default.
- W4380686346 creator A5051463872 @default.
- W4380686346 creator A5068506150 @default.
- W4380686346 date "2023-06-13" @default.
- W4380686346 modified "2023-09-25" @default.
- W4380686346 title "Non-Specific Low Back Pain: An Inductive Exploratory Analysis through Factor Analysis and Deep Learning for Better Clustering" @default.
- W4380686346 cites W1226498302 @default.
- W4380686346 cites W148611707 @default.
- W4380686346 cites W1553243973 @default.
- W4380686346 cites W1573268944 @default.
- W4380686346 cites W1686749590 @default.
- W4380686346 cites W1907396862 @default.
- W4380686346 cites W1957937187 @default.
- W4380686346 cites W1966988360 @default.
- W4380686346 cites W1977849332 @default.
- W4380686346 cites W1983941174 @default.
- W4380686346 cites W1994586970 @default.
- W4380686346 cites W1995875735 @default.
- W4380686346 cites W1996117239 @default.
- W4380686346 cites W1996998435 @default.
- W4380686346 cites W1997226619 @default.
- W4380686346 cites W2006687786 @default.
- W4380686346 cites W2010688137 @default.
- W4380686346 cites W2012109462 @default.
- W4380686346 cites W2012383929 @default.
- W4380686346 cites W2023370307 @default.
- W4380686346 cites W2026836512 @default.
- W4380686346 cites W2028696715 @default.
- W4380686346 cites W2032005167 @default.
- W4380686346 cites W2039493019 @default.
- W4380686346 cites W2041613577 @default.
- W4380686346 cites W2043542179 @default.
- W4380686346 cites W2045266437 @default.
- W4380686346 cites W2046016989 @default.
- W4380686346 cites W2047956505 @default.
- W4380686346 cites W2048846338 @default.
- W4380686346 cites W2048997754 @default.
- W4380686346 cites W2052026284 @default.
- W4380686346 cites W2054071120 @default.
- W4380686346 cites W2056472049 @default.
- W4380686346 cites W2056656587 @default.
- W4380686346 cites W2059887341 @default.
- W4380686346 cites W2061967881 @default.
- W4380686346 cites W2067804071 @default.
- W4380686346 cites W2075338513 @default.
- W4380686346 cites W2075756325 @default.
- W4380686346 cites W2076103268 @default.
- W4380686346 cites W2084639593 @default.
- W4380686346 cites W2087659605 @default.
- W4380686346 cites W2090638897 @default.
- W4380686346 cites W2093513705 @default.
- W4380686346 cites W2095233631 @default.
- W4380686346 cites W2107201698 @default.
- W4380686346 cites W2108341823 @default.
- W4380686346 cites W2110051608 @default.
- W4380686346 cites W2111887260 @default.
- W4380686346 cites W2114886225 @default.
- W4380686346 cites W2118023920 @default.
- W4380686346 cites W2118612173 @default.
- W4380686346 cites W2120779627 @default.
- W4380686346 cites W2126804007 @default.
- W4380686346 cites W2129812678 @default.
- W4380686346 cites W2133097426 @default.
- W4380686346 cites W2138255049 @default.
- W4380686346 cites W2138554597 @default.
- W4380686346 cites W2150842053 @default.
- W4380686346 cites W2165816834 @default.
- W4380686346 cites W2166081925 @default.
- W4380686346 cites W2166240555 @default.
- W4380686346 cites W2166274714 @default.
- W4380686346 cites W2167810128 @default.
- W4380686346 cites W2193961370 @default.
- W4380686346 cites W2225962883 @default.
- W4380686346 cites W2287553786 @default.
- W4380686346 cites W2287965080 @default.
- W4380686346 cites W2321988965 @default.
- W4380686346 cites W2422558391 @default.
- W4380686346 cites W2484136257 @default.
- W4380686346 cites W2499581503 @default.
- W4380686346 cites W2506721812 @default.
- W4380686346 cites W2766978395 @default.
- W4380686346 cites W2790410554 @default.
- W4380686346 cites W2804408249 @default.
- W4380686346 cites W2807710162 @default.
- W4380686346 cites W2883143443 @default.
- W4380686346 cites W2888893474 @default.
- W4380686346 cites W2899104208 @default.
- W4380686346 cites W2911309758 @default.
- W4380686346 cites W2919360152 @default.
- W4380686346 cites W2945732891 @default.
- W4380686346 cites W2952278392 @default.
- W4380686346 cites W2962691541 @default.
- W4380686346 cites W2978980369 @default.