Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380714662> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W4380714662 abstract "In this paper, we establish the sharp fractional subelliptic Sobolev inequalities and Gagliardo-Nirenberg inequalities on stratified Lie groups. The best constants are given in terms of a ground state solution of a fractional subelliptic equation involving the fractional $p$-sublaplacian ($1<p<infty$) on stratified Lie groups. We also prove the existence of ground state (least energy) solutions to nonlinear subelliptic fractional Schrodinger equation on stratified Lie groups. Different from the proofs of analogous results in the setting of classical Sobolev spaces on Euclidean spaces given by Weinstein (Comm. Math. Phys. 87(4):576-676 (1982/1983)) using the rearrangement inequality which is not available in stratified Lie groups, we apply a subelliptic version of vanishing lemma due to Lions extended in the setting of stratified Lie groups combining it with the compact embedding theorem for subelliptic fractional Sobolev spaces obtained in our previous paper (Math. Ann. (2023)). We also present subelliptic fractional logarithmic Sobolev inequalities with explicit constants on stratified Lie groups. The main results are new for $p=2$ even in the context of the Heisenberg group." @default.
- W4380714662 created "2023-06-15" @default.
- W4380714662 creator A5006041127 @default.
- W4380714662 creator A5014446077 @default.
- W4380714662 creator A5078038833 @default.
- W4380714662 date "2023-06-13" @default.
- W4380714662 modified "2023-09-26" @default.
- W4380714662 title "Best constants in subelliptic fractional Sobolev and Gagliardo-Nirenberg inequalities and ground states on stratified Lie groups" @default.
- W4380714662 doi "https://doi.org/10.48550/arxiv.2306.07657" @default.
- W4380714662 hasPublicationYear "2023" @default.
- W4380714662 type Work @default.
- W4380714662 citedByCount "0" @default.
- W4380714662 crossrefType "posted-content" @default.
- W4380714662 hasAuthorship W4380714662A5006041127 @default.
- W4380714662 hasAuthorship W4380714662A5014446077 @default.
- W4380714662 hasAuthorship W4380714662A5078038833 @default.
- W4380714662 hasBestOaLocation W43807146621 @default.
- W4380714662 hasConcept C127519595 @default.
- W4380714662 hasConcept C134306372 @default.
- W4380714662 hasConcept C185644265 @default.
- W4380714662 hasConcept C187915474 @default.
- W4380714662 hasConcept C202444582 @default.
- W4380714662 hasConcept C33923547 @default.
- W4380714662 hasConcept C99730327 @default.
- W4380714662 hasConceptScore W4380714662C127519595 @default.
- W4380714662 hasConceptScore W4380714662C134306372 @default.
- W4380714662 hasConceptScore W4380714662C185644265 @default.
- W4380714662 hasConceptScore W4380714662C187915474 @default.
- W4380714662 hasConceptScore W4380714662C202444582 @default.
- W4380714662 hasConceptScore W4380714662C33923547 @default.
- W4380714662 hasConceptScore W4380714662C99730327 @default.
- W4380714662 hasLocation W43807146621 @default.
- W4380714662 hasOpenAccess W4380714662 @default.
- W4380714662 hasPrimaryLocation W43807146621 @default.
- W4380714662 hasRelatedWork W1543558945 @default.
- W4380714662 hasRelatedWork W1973865997 @default.
- W4380714662 hasRelatedWork W2016543700 @default.
- W4380714662 hasRelatedWork W2073766576 @default.
- W4380714662 hasRelatedWork W2087968352 @default.
- W4380714662 hasRelatedWork W2143411713 @default.
- W4380714662 hasRelatedWork W2605944297 @default.
- W4380714662 hasRelatedWork W2964278643 @default.
- W4380714662 hasRelatedWork W2999232206 @default.
- W4380714662 hasRelatedWork W4302612836 @default.
- W4380714662 isParatext "false" @default.
- W4380714662 isRetracted "false" @default.
- W4380714662 workType "article" @default.