Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380763457> ?p ?o ?g. }
- W4380763457 endingPage "20" @default.
- W4380763457 startingPage "1" @default.
- W4380763457 abstract "Vision transformers (ViTs) have been trending in image classification tasks due to their promising performance when compared to convolutional neural networks (CNNs). As a result, many researchers have tried to incorporate ViTs in hyperspectral image (HSI) classification tasks. To achieve satisfactory performance, close to that of CNNs, transformers need fewer parameters. ViTs and other similar transformers use an external classification (CLS) token which is randomly initialized and often fails to generalize well, whereas other sources of multimodal datasets, such as light detection and ranging (LiDAR) offer the potential to improve these models by means of a CLS. In this paper, we introduce a new multimodal fusion transformer (MFT) network which comprises a multihead cross patch attention (mCrossPA) for HSI land-cover classification. Our mCrossPA utilizes other sources of complementary information in addition to the HSI in the transformer encoder to achieve better generalization. The concept of tokenization is used to generate CLS and HSI patch tokens, helping to learn a distinctive representation in a reduced and hierarchical feature space. Extensive experiments are carried out on widely used benchmark datasets i.e., the University of Houston, Trento, University of Southern Mississippi Gulfpark (MUUFL), and Augsburg. We compare the results of the proposed MFT model with other state-of-the-art transformers, classical CNNs, and conventional classifiers models. The superior performance achieved by the proposed model is due to the use of multihead cross patch attention. The source code will be made available publicly at https://github.com/AnkurDeria/MFT." @default.
- W4380763457 created "2023-06-16" @default.
- W4380763457 creator A5035508615 @default.
- W4380763457 creator A5042657950 @default.
- W4380763457 creator A5053722593 @default.
- W4380763457 creator A5054292278 @default.
- W4380763457 creator A5075013625 @default.
- W4380763457 creator A5087427076 @default.
- W4380763457 date "2023-01-01" @default.
- W4380763457 modified "2023-10-11" @default.
- W4380763457 title "Multimodal Fusion Transformer for Remote Sensing Image Classification" @default.
- W4380763457 cites W1497089125 @default.
- W4380763457 cites W1551648222 @default.
- W4380763457 cites W1966580635 @default.
- W4380763457 cites W1973450996 @default.
- W4380763457 cites W2059438067 @default.
- W4380763457 cites W2065407071 @default.
- W4380763457 cites W2077570405 @default.
- W4380763457 cites W2107878631 @default.
- W4380763457 cites W2127199143 @default.
- W4380763457 cites W2136251662 @default.
- W4380763457 cites W2146062404 @default.
- W4380763457 cites W2194775991 @default.
- W4380763457 cites W2606929568 @default.
- W4380763457 cites W2764276316 @default.
- W4380763457 cites W2791006446 @default.
- W4380763457 cites W2793218933 @default.
- W4380763457 cites W2888119354 @default.
- W4380763457 cites W2914331134 @default.
- W4380763457 cites W2923136550 @default.
- W4380763457 cites W2952565170 @default.
- W4380763457 cites W2964199361 @default.
- W4380763457 cites W2982536526 @default.
- W4380763457 cites W3003552243 @default.
- W4380763457 cites W3004968762 @default.
- W4380763457 cites W3014628500 @default.
- W4380763457 cites W3022592629 @default.
- W4380763457 cites W3031696400 @default.
- W4380763457 cites W3041991648 @default.
- W4380763457 cites W3047443805 @default.
- W4380763457 cites W3048631361 @default.
- W4380763457 cites W3084521418 @default.
- W4380763457 cites W3090232286 @default.
- W4380763457 cites W3100714546 @default.
- W4380763457 cites W3101012758 @default.
- W4380763457 cites W3105357426 @default.
- W4380763457 cites W3112751649 @default.
- W4380763457 cites W3114720220 @default.
- W4380763457 cites W3122028341 @default.
- W4380763457 cites W3122774149 @default.
- W4380763457 cites W3128861763 @default.
- W4380763457 cites W3135445258 @default.
- W4380763457 cites W3140885850 @default.
- W4380763457 cites W3167109952 @default.
- W4380763457 cites W3168367808 @default.
- W4380763457 cites W3186475347 @default.
- W4380763457 cites W3203312104 @default.
- W4380763457 cites W3207818847 @default.
- W4380763457 cites W3214821343 @default.
- W4380763457 cites W4200068923 @default.
- W4380763457 cites W4206706211 @default.
- W4380763457 cites W4210794570 @default.
- W4380763457 cites W4214847365 @default.
- W4380763457 cites W4281785683 @default.
- W4380763457 cites W4312465065 @default.
- W4380763457 cites W4312592451 @default.
- W4380763457 cites W4313306177 @default.
- W4380763457 cites W4313506322 @default.
- W4380763457 cites W4319069095 @default.
- W4380763457 doi "https://doi.org/10.1109/tgrs.2023.3286826" @default.
- W4380763457 hasPublicationYear "2023" @default.
- W4380763457 type Work @default.
- W4380763457 citedByCount "10" @default.
- W4380763457 countsByYear W43807634572022 @default.
- W4380763457 countsByYear W43807634572023 @default.
- W4380763457 crossrefType "journal-article" @default.
- W4380763457 hasAuthorship W4380763457A5035508615 @default.
- W4380763457 hasAuthorship W4380763457A5042657950 @default.
- W4380763457 hasAuthorship W4380763457A5053722593 @default.
- W4380763457 hasAuthorship W4380763457A5054292278 @default.
- W4380763457 hasAuthorship W4380763457A5075013625 @default.
- W4380763457 hasAuthorship W4380763457A5087427076 @default.
- W4380763457 hasBestOaLocation W43807634572 @default.
- W4380763457 hasConcept C111919701 @default.
- W4380763457 hasConcept C115961682 @default.
- W4380763457 hasConcept C118505674 @default.
- W4380763457 hasConcept C119767625 @default.
- W4380763457 hasConcept C119857082 @default.
- W4380763457 hasConcept C121332964 @default.
- W4380763457 hasConcept C153180895 @default.
- W4380763457 hasConcept C154945302 @default.
- W4380763457 hasConcept C165801399 @default.
- W4380763457 hasConcept C190729725 @default.
- W4380763457 hasConcept C38652104 @default.
- W4380763457 hasConcept C41008148 @default.
- W4380763457 hasConcept C48145219 @default.
- W4380763457 hasConcept C62520636 @default.
- W4380763457 hasConcept C66322947 @default.