Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380791831> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4380791831 abstract "Sign Language is a visual language used by millions of people around the world. American Sign Language (ASL) is one of the most popular sign languages and the third most popular language in the United States. Automatic recognition of ASL signs can help bridge the communication gap between deaf and hearing individuals. In this project, we explore the use of deep learning models for ASL sign recognition, using the MNIST dataset as a benchmark. We preprocessed the data by reshaping the images to the input layer size of the models and normalized the pixel values. We evaluated five popular deep-learning models for image classification: ResNet50, LeNet, AlexNet, VGG16, and DenseNet121. We trained and tested each model on the MNIST dataset, using metrics such as accuracy, mean absolute error (MAE), precision, and recall to evaluate their performance. We also computed the mean squared error (MSE) and confusion matrix to analyze the model's error patterns. Next, we explored ensemble learning techniques to further improve the accuracy of the ASL recognition model. We selected ResNet50, AlexNet, and LeNet as the three best-performing models, and tested two ensemble methods: concatenation and stacking. We found that stacking gave promising accuracy, outperforming concatenation by a significant margin. In conclusion, our study demonstrates the effectiveness of deep learning models for ASL recognition, and the potential of ensemble learning techniques to further improve accuracy from 97% recorded in existing models to 99% using our ensemble model. Our findings could have practical applications in the development of assistive technologies for individuals in need." @default.
- W4380791831 created "2023-06-16" @default.
- W4380791831 creator A5092177502 @default.
- W4380791831 date "2023-06-15" @default.
- W4380791831 modified "2023-09-25" @default.
- W4380791831 title "SIGN LANGUAGE RECOGNITION USING A HYBRID MACHINE LEARNING MODEL" @default.
- W4380791831 doi "https://doi.org/10.31979/etd.9zn4-sjgj" @default.
- W4380791831 hasPublicationYear "2023" @default.
- W4380791831 type Work @default.
- W4380791831 citedByCount "0" @default.
- W4380791831 crossrefType "dissertation" @default.
- W4380791831 hasAuthorship W4380791831A5092177502 @default.
- W4380791831 hasConcept C108583219 @default.
- W4380791831 hasConcept C114614502 @default.
- W4380791831 hasConcept C119857082 @default.
- W4380791831 hasConcept C13280743 @default.
- W4380791831 hasConcept C138885662 @default.
- W4380791831 hasConcept C153180895 @default.
- W4380791831 hasConcept C154945302 @default.
- W4380791831 hasConcept C185798385 @default.
- W4380791831 hasConcept C190502265 @default.
- W4380791831 hasConcept C205649164 @default.
- W4380791831 hasConcept C2776737515 @default.
- W4380791831 hasConcept C28490314 @default.
- W4380791831 hasConcept C33923547 @default.
- W4380791831 hasConcept C41008148 @default.
- W4380791831 hasConcept C41895202 @default.
- W4380791831 hasConcept C45942800 @default.
- W4380791831 hasConcept C522192633 @default.
- W4380791831 hasConcept C87619178 @default.
- W4380791831 hasConceptScore W4380791831C108583219 @default.
- W4380791831 hasConceptScore W4380791831C114614502 @default.
- W4380791831 hasConceptScore W4380791831C119857082 @default.
- W4380791831 hasConceptScore W4380791831C13280743 @default.
- W4380791831 hasConceptScore W4380791831C138885662 @default.
- W4380791831 hasConceptScore W4380791831C153180895 @default.
- W4380791831 hasConceptScore W4380791831C154945302 @default.
- W4380791831 hasConceptScore W4380791831C185798385 @default.
- W4380791831 hasConceptScore W4380791831C190502265 @default.
- W4380791831 hasConceptScore W4380791831C205649164 @default.
- W4380791831 hasConceptScore W4380791831C2776737515 @default.
- W4380791831 hasConceptScore W4380791831C28490314 @default.
- W4380791831 hasConceptScore W4380791831C33923547 @default.
- W4380791831 hasConceptScore W4380791831C41008148 @default.
- W4380791831 hasConceptScore W4380791831C41895202 @default.
- W4380791831 hasConceptScore W4380791831C45942800 @default.
- W4380791831 hasConceptScore W4380791831C522192633 @default.
- W4380791831 hasConceptScore W4380791831C87619178 @default.
- W4380791831 hasLocation W43807918311 @default.
- W4380791831 hasOpenAccess W4380791831 @default.
- W4380791831 hasPrimaryLocation W43807918311 @default.
- W4380791831 hasRelatedWork W2597787948 @default.
- W4380791831 hasRelatedWork W2791691546 @default.
- W4380791831 hasRelatedWork W2810053714 @default.
- W4380791831 hasRelatedWork W2950066684 @default.
- W4380791831 hasRelatedWork W2951786554 @default.
- W4380791831 hasRelatedWork W3136979370 @default.
- W4380791831 hasRelatedWork W3156786002 @default.
- W4380791831 hasRelatedWork W3186840088 @default.
- W4380791831 hasRelatedWork W4298388782 @default.
- W4380791831 hasRelatedWork W4308112567 @default.
- W4380791831 isParatext "false" @default.
- W4380791831 isRetracted "false" @default.
- W4380791831 workType "dissertation" @default.