Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380793031> ?p ?o ?g. }
- W4380793031 endingPage "104292" @default.
- W4380793031 startingPage "104292" @default.
- W4380793031 abstract "The Coal Mine Roof Rating (CMRR) is an essential input parameter for roof support design. The current manual calculation process brings evident subjectivity in selecting rock mechanical properties, roof unit classification, and fracture spacing calculation, which is needed for CMRR calculation. In this paper, state-of-art machine learning and computer vision techniques were applied to provide a repeatable and consistent data-driven solution to reduce the subjectivity of CMRR calculation by integrating geophysical logging data, drill core images, and laboratory data. Firstly, the group-based machine learning approach, which has demonstrated better performance than the conventional machine learning methods, was introduced to predict the uniaxial compressive strength (UCS) of roof strata. Then, an advanced computer vision model trained by transfer learning technique was adopted to extract the dimensions of the core pieces for the automatic rock quality designation (RQD) and fracture spacing calculation based on the drill core images. The geotechnical units within the roof bolted interval were classified in terms of the adjacent sedimentary layers, which share similar geotechnical properties. The predicted quantities (UCS, RQD, and fracture spacing) by the machine learning methods were converted into the corresponding ratings, which were further used for the unit ratings and machine learning based automatic CMRR calculation. The automatic CMRR values from machine learning models show a promising linear correlation (R2 = 0.78) with the manually calculated CMRR values, demonstrating that this new approach has the potential to be applied as an alternative method, which delivers a benchmark of CMRR values to enhance its calculation confidence and objectivity." @default.
- W4380793031 created "2023-06-16" @default.
- W4380793031 creator A5002488377 @default.
- W4380793031 creator A5053688370 @default.
- W4380793031 creator A5073347998 @default.
- W4380793031 creator A5075143503 @default.
- W4380793031 creator A5090477549 @default.
- W4380793031 creator A5091083063 @default.
- W4380793031 creator A5092177735 @default.
- W4380793031 date "2023-06-01" @default.
- W4380793031 modified "2023-09-26" @default.
- W4380793031 title "Automatic coal mine roof rating calculation using machine learning" @default.
- W4380793031 cites W1968576247 @default.
- W4380793031 cites W1977168082 @default.
- W4380793031 cites W1977389574 @default.
- W4380793031 cites W1982276656 @default.
- W4380793031 cites W1986507289 @default.
- W4380793031 cites W1999565652 @default.
- W4380793031 cites W2001780956 @default.
- W4380793031 cites W2003481739 @default.
- W4380793031 cites W2008569965 @default.
- W4380793031 cites W2013051962 @default.
- W4380793031 cites W2036013174 @default.
- W4380793031 cites W2043057758 @default.
- W4380793031 cites W2048628678 @default.
- W4380793031 cites W2077085946 @default.
- W4380793031 cites W2132103811 @default.
- W4380793031 cites W2132423986 @default.
- W4380793031 cites W2153692209 @default.
- W4380793031 cites W2211022813 @default.
- W4380793031 cites W2287332365 @default.
- W4380793031 cites W2321541524 @default.
- W4380793031 cites W2471417255 @default.
- W4380793031 cites W2574205827 @default.
- W4380793031 cites W2680155385 @default.
- W4380793031 cites W2900238165 @default.
- W4380793031 cites W2950510098 @default.
- W4380793031 cites W2960241714 @default.
- W4380793031 cites W2967114421 @default.
- W4380793031 cites W3000486893 @default.
- W4380793031 cites W3001856776 @default.
- W4380793031 cites W3007733967 @default.
- W4380793031 cites W3009588841 @default.
- W4380793031 cites W3037314178 @default.
- W4380793031 doi "https://doi.org/10.1016/j.coal.2023.104292" @default.
- W4380793031 hasPublicationYear "2023" @default.
- W4380793031 type Work @default.
- W4380793031 citedByCount "0" @default.
- W4380793031 crossrefType "journal-article" @default.
- W4380793031 hasAuthorship W4380793031A5002488377 @default.
- W4380793031 hasAuthorship W4380793031A5053688370 @default.
- W4380793031 hasAuthorship W4380793031A5073347998 @default.
- W4380793031 hasAuthorship W4380793031A5075143503 @default.
- W4380793031 hasAuthorship W4380793031A5090477549 @default.
- W4380793031 hasAuthorship W4380793031A5091083063 @default.
- W4380793031 hasAuthorship W4380793031A5092177735 @default.
- W4380793031 hasConcept C108615695 @default.
- W4380793031 hasConcept C119857082 @default.
- W4380793031 hasConcept C127413603 @default.
- W4380793031 hasConcept C153180895 @default.
- W4380793031 hasConcept C154945302 @default.
- W4380793031 hasConcept C173736775 @default.
- W4380793031 hasConcept C2776748203 @default.
- W4380793031 hasConcept C2780150128 @default.
- W4380793031 hasConcept C41008148 @default.
- W4380793031 hasConcept C50644808 @default.
- W4380793031 hasConcept C518851703 @default.
- W4380793031 hasConcept C548081761 @default.
- W4380793031 hasConcept C66938386 @default.
- W4380793031 hasConcept C78519656 @default.
- W4380793031 hasConceptScore W4380793031C108615695 @default.
- W4380793031 hasConceptScore W4380793031C119857082 @default.
- W4380793031 hasConceptScore W4380793031C127413603 @default.
- W4380793031 hasConceptScore W4380793031C153180895 @default.
- W4380793031 hasConceptScore W4380793031C154945302 @default.
- W4380793031 hasConceptScore W4380793031C173736775 @default.
- W4380793031 hasConceptScore W4380793031C2776748203 @default.
- W4380793031 hasConceptScore W4380793031C2780150128 @default.
- W4380793031 hasConceptScore W4380793031C41008148 @default.
- W4380793031 hasConceptScore W4380793031C50644808 @default.
- W4380793031 hasConceptScore W4380793031C518851703 @default.
- W4380793031 hasConceptScore W4380793031C548081761 @default.
- W4380793031 hasConceptScore W4380793031C66938386 @default.
- W4380793031 hasConceptScore W4380793031C78519656 @default.
- W4380793031 hasLocation W43807930311 @default.
- W4380793031 hasOpenAccess W4380793031 @default.
- W4380793031 hasPrimaryLocation W43807930311 @default.
- W4380793031 hasRelatedWork W1525510058 @default.
- W4380793031 hasRelatedWork W159500513 @default.
- W4380793031 hasRelatedWork W2295628041 @default.
- W4380793031 hasRelatedWork W2386183059 @default.
- W4380793031 hasRelatedWork W2475251269 @default.
- W4380793031 hasRelatedWork W2945765785 @default.
- W4380793031 hasRelatedWork W2969890106 @default.
- W4380793031 hasRelatedWork W3134233996 @default.
- W4380793031 hasRelatedWork W3185179407 @default.
- W4380793031 hasRelatedWork W4320060020 @default.
- W4380793031 hasVolume "274" @default.