Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380794101> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4380794101 abstract "Introduction: Recently introduced radiomics technology enables the detection of hidden information from commonly disregarded medical images, including CXR. Hypothesis: The purpose of this study was to evaluate the feasibility of a novel technique involving radiomics features combined with machine learning to identify moderate-to-severe coronary artery calcium (CAC) using simple chest X-ray radiography (CXR). Methods: We included 559 patients (women, 44.9%; mean age, 62.4 ± 9.4 years) from two independent clinical studies who underwent a calcium scan and CXR within 6 months. The total cohort was allocated to the training and validation cohorts in a 7:3 ratio, with all clinical characteristics well-matched, including the CAC score. Radiomics features were extracted from manually delineated cardiac contours, and a radiomics score formulation for the prediction of a CAC score ≥100 was generated using the machine learning method in the training cohort. To evaluate the incremental performance of the radiomics score, a basic clinical model including age, sex, and body mass index (model 1) and a radiomics score added model (model 2) were utilized. Results: The radiomics score was the most prominent predictive factor for CAC score ≥100 (odds ratio [OR] = 2.33; 95% confidence interval [CI] = 1.62-3.44; p < 0.001). In the training cohort, model 2 demonstrated significant incremental validity in predicting CAC scores ≥100 compared to model 1 (area under the curve [AUC]; 0.73 vs. 0.69, p = 0.022). The performance of model 2 was also similar in both the training and validation cohorts (AUC 0.73, 95% confidence interval [CI] 0.68 - 0.78 vs. AUC 0.72, 95% CI 0.64 - 0.80). Conclusions: We developed a machine learning-based radiomics scoring model that could be utilized as a potential imaging marker for predicting CAC scores from CXR. This novel method may be widely applicable to clinical practice and can improve the pre-test probability of coronary artery disease." @default.
- W4380794101 created "2023-06-16" @default.
- W4380794101 creator A5022947753 @default.
- W4380794101 creator A5052178012 @default.
- W4380794101 creator A5073844998 @default.
- W4380794101 creator A5083433064 @default.
- W4380794101 date "2022-11-08" @default.
- W4380794101 modified "2023-09-23" @default.
- W4380794101 title "Abstract 11189: An Integrated Framework With Machine Learning and Radiomics Score for the Prediction of Coronary Artery Calcium Score From Chest Radiographs" @default.
- W4380794101 doi "https://doi.org/10.1161/circ.146.suppl_1.11189" @default.
- W4380794101 hasPublicationYear "2022" @default.
- W4380794101 type Work @default.
- W4380794101 citedByCount "0" @default.
- W4380794101 crossrefType "journal-article" @default.
- W4380794101 hasAuthorship W4380794101A5022947753 @default.
- W4380794101 hasAuthorship W4380794101A5052178012 @default.
- W4380794101 hasAuthorship W4380794101A5073844998 @default.
- W4380794101 hasAuthorship W4380794101A5083433064 @default.
- W4380794101 hasConcept C11783203 @default.
- W4380794101 hasConcept C119857082 @default.
- W4380794101 hasConcept C126322002 @default.
- W4380794101 hasConcept C126838900 @default.
- W4380794101 hasConcept C156957248 @default.
- W4380794101 hasConcept C164705383 @default.
- W4380794101 hasConcept C2778559731 @default.
- W4380794101 hasConcept C2779134260 @default.
- W4380794101 hasConcept C36454342 @default.
- W4380794101 hasConcept C41008148 @default.
- W4380794101 hasConcept C44249647 @default.
- W4380794101 hasConcept C58471807 @default.
- W4380794101 hasConcept C71924100 @default.
- W4380794101 hasConcept C72563966 @default.
- W4380794101 hasConcept C76318530 @default.
- W4380794101 hasConceptScore W4380794101C11783203 @default.
- W4380794101 hasConceptScore W4380794101C119857082 @default.
- W4380794101 hasConceptScore W4380794101C126322002 @default.
- W4380794101 hasConceptScore W4380794101C126838900 @default.
- W4380794101 hasConceptScore W4380794101C156957248 @default.
- W4380794101 hasConceptScore W4380794101C164705383 @default.
- W4380794101 hasConceptScore W4380794101C2778559731 @default.
- W4380794101 hasConceptScore W4380794101C2779134260 @default.
- W4380794101 hasConceptScore W4380794101C36454342 @default.
- W4380794101 hasConceptScore W4380794101C41008148 @default.
- W4380794101 hasConceptScore W4380794101C44249647 @default.
- W4380794101 hasConceptScore W4380794101C58471807 @default.
- W4380794101 hasConceptScore W4380794101C71924100 @default.
- W4380794101 hasConceptScore W4380794101C72563966 @default.
- W4380794101 hasConceptScore W4380794101C76318530 @default.
- W4380794101 hasIssue "Suppl_1" @default.
- W4380794101 hasLocation W43807941011 @default.
- W4380794101 hasOpenAccess W4380794101 @default.
- W4380794101 hasPrimaryLocation W43807941011 @default.
- W4380794101 hasRelatedWork W2416466220 @default.
- W4380794101 hasRelatedWork W3030079390 @default.
- W4380794101 hasRelatedWork W3175552280 @default.
- W4380794101 hasRelatedWork W3193894338 @default.
- W4380794101 hasRelatedWork W4213066405 @default.
- W4380794101 hasRelatedWork W4242040031 @default.
- W4380794101 hasRelatedWork W4309994424 @default.
- W4380794101 hasRelatedWork W4312070974 @default.
- W4380794101 hasRelatedWork W4313648255 @default.
- W4380794101 hasRelatedWork W885932133 @default.
- W4380794101 hasVolume "146" @default.
- W4380794101 isParatext "false" @default.
- W4380794101 isRetracted "false" @default.
- W4380794101 workType "article" @default.