Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380838807> ?p ?o ?g. }
- W4380838807 endingPage "71" @default.
- W4380838807 startingPage "49" @default.
- W4380838807 abstract "Metaheuristic algorithms (MH) are widely used in engineering applications due to their global search capabilities and independence from gradient information. Truss structures are commonly used in structural design, and the best solution typically involves minimizing the weight while ensuring adequate strength and stiffness. To achieve this goal, several hybrid MH algorithms have been proposed by combining the strengths of two or more algorithms. In this paper, we propose a hybrid social network search (SNS) and material generation algorithm (MGA) for truss structure optimization. The main levels as parallel and series levels are defined for the hybrid algorithm. The proposed algorithm is evaluated using several benchmark truss structures, and the results demonstrate its superiority over other state-of-the-art MH algorithms." @default.
- W4380838807 created "2023-06-16" @default.
- W4380838807 creator A5016277152 @default.
- W4380838807 creator A5017987185 @default.
- W4380838807 creator A5026402315 @default.
- W4380838807 creator A5051059716 @default.
- W4380838807 creator A5064467549 @default.
- W4380838807 creator A5066543624 @default.
- W4380838807 date "2023-01-01" @default.
- W4380838807 modified "2023-09-24" @default.
- W4380838807 title "Hybrid Social Network Search and Material Generation Algorithm for Shape and Size Optimization of Truss Structures" @default.
- W4380838807 cites W1964289615 @default.
- W4380838807 cites W1974915966 @default.
- W4380838807 cites W1982452260 @default.
- W4380838807 cites W1985460844 @default.
- W4380838807 cites W1997986228 @default.
- W4380838807 cites W2003890325 @default.
- W4380838807 cites W2006061810 @default.
- W4380838807 cites W2006694777 @default.
- W4380838807 cites W2012115555 @default.
- W4380838807 cites W2015490212 @default.
- W4380838807 cites W2015759185 @default.
- W4380838807 cites W2016360645 @default.
- W4380838807 cites W2029631366 @default.
- W4380838807 cites W2061438946 @default.
- W4380838807 cites W2093698958 @default.
- W4380838807 cites W2117228208 @default.
- W4380838807 cites W2136929824 @default.
- W4380838807 cites W2163510721 @default.
- W4380838807 cites W2280115106 @default.
- W4380838807 cites W2290883490 @default.
- W4380838807 cites W2542691202 @default.
- W4380838807 cites W2612473079 @default.
- W4380838807 cites W2738900493 @default.
- W4380838807 cites W2897100459 @default.
- W4380838807 cites W2899627856 @default.
- W4380838807 cites W2935373960 @default.
- W4380838807 cites W2944778078 @default.
- W4380838807 cites W2949642564 @default.
- W4380838807 cites W2979590822 @default.
- W4380838807 cites W2980570898 @default.
- W4380838807 cites W3003255472 @default.
- W4380838807 cites W3009131966 @default.
- W4380838807 cites W3036361249 @default.
- W4380838807 cites W3081751664 @default.
- W4380838807 cites W3087509239 @default.
- W4380838807 cites W3119493330 @default.
- W4380838807 cites W3126702181 @default.
- W4380838807 cites W3128518856 @default.
- W4380838807 cites W3136951162 @default.
- W4380838807 cites W3148093631 @default.
- W4380838807 cites W3160964102 @default.
- W4380838807 cites W3162154139 @default.
- W4380838807 cites W3164506769 @default.
- W4380838807 cites W3173474496 @default.
- W4380838807 cites W3177327711 @default.
- W4380838807 cites W3182276857 @default.
- W4380838807 cites W3195795164 @default.
- W4380838807 cites W3199052649 @default.
- W4380838807 cites W4200036105 @default.
- W4380838807 cites W4205688552 @default.
- W4380838807 cites W4205765055 @default.
- W4380838807 cites W4206423616 @default.
- W4380838807 cites W4206718313 @default.
- W4380838807 cites W4211016350 @default.
- W4380838807 cites W4226460773 @default.
- W4380838807 cites W4250503569 @default.
- W4380838807 cites W4280498227 @default.
- W4380838807 cites W4283069163 @default.
- W4380838807 cites W4283079406 @default.
- W4380838807 cites W4283461979 @default.
- W4380838807 cites W4286565494 @default.
- W4380838807 cites W4293052204 @default.
- W4380838807 cites W4294439676 @default.
- W4380838807 cites W4296312586 @default.
- W4380838807 cites W4296932892 @default.
- W4380838807 cites W4304811029 @default.
- W4380838807 cites W4311063052 @default.
- W4380838807 cites W4311105175 @default.
- W4380838807 cites W4313478500 @default.
- W4380838807 cites W4313479115 @default.
- W4380838807 doi "https://doi.org/10.1007/978-3-031-34728-3_4" @default.
- W4380838807 hasPublicationYear "2023" @default.
- W4380838807 type Work @default.
- W4380838807 citedByCount "0" @default.
- W4380838807 crossrefType "book-chapter" @default.
- W4380838807 hasAuthorship W4380838807A5016277152 @default.
- W4380838807 hasAuthorship W4380838807A5017987185 @default.
- W4380838807 hasAuthorship W4380838807A5026402315 @default.
- W4380838807 hasAuthorship W4380838807A5051059716 @default.
- W4380838807 hasAuthorship W4380838807A5064467549 @default.
- W4380838807 hasAuthorship W4380838807A5066543624 @default.
- W4380838807 hasConcept C105795698 @default.
- W4380838807 hasConcept C109718341 @default.
- W4380838807 hasConcept C11413529 @default.
- W4380838807 hasConcept C126255220 @default.
- W4380838807 hasConcept C127413603 @default.
- W4380838807 hasConcept C13280743 @default.