Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380839006> ?p ?o ?g. }
- W4380839006 endingPage "177" @default.
- W4380839006 startingPage "147" @default.
- W4380839006 abstract "Machine learning (ML) is one of the methods used by the artificial intelligence approach. Machine learning is used to teach machines how to handle data more efficiently. The purpose of machine learning is to learn from the data. Thanks to machine learning, a certain result can be reached without the need for an expert on the subject. It has very common usage areas from the financial sector to e-mail analysis. Machine learning is also widely used in civil engineering. In this study, machine learning is explained in historical development, and general terms and the studies that have been done are summarized." @default.
- W4380839006 created "2023-06-16" @default.
- W4380839006 creator A5018926238 @default.
- W4380839006 creator A5036570843 @default.
- W4380839006 creator A5044865118 @default.
- W4380839006 creator A5062453217 @default.
- W4380839006 date "2023-01-01" @default.
- W4380839006 modified "2023-10-18" @default.
- W4380839006 title "The State of Art in Machine Learning Applications in Civil Engineering" @default.
- W4380839006 cites W1479807131 @default.
- W4380839006 cites W1842075455 @default.
- W4380839006 cites W2038808304 @default.
- W4380839006 cites W2045256553 @default.
- W4380839006 cites W2068893448 @default.
- W4380839006 cites W2072735345 @default.
- W4380839006 cites W2076063813 @default.
- W4380839006 cites W2082893943 @default.
- W4380839006 cites W2084959643 @default.
- W4380839006 cites W2085443648 @default.
- W4380839006 cites W2103647733 @default.
- W4380839006 cites W2112081648 @default.
- W4380839006 cites W2122111042 @default.
- W4380839006 cites W2124287399 @default.
- W4380839006 cites W2290425607 @default.
- W4380839006 cites W2328931998 @default.
- W4380839006 cites W2551125611 @default.
- W4380839006 cites W2733722625 @default.
- W4380839006 cites W2747464529 @default.
- W4380839006 cites W2756489700 @default.
- W4380839006 cites W2783208634 @default.
- W4380839006 cites W2788697198 @default.
- W4380839006 cites W2792066564 @default.
- W4380839006 cites W2902672843 @default.
- W4380839006 cites W2909324897 @default.
- W4380839006 cites W2923537029 @default.
- W4380839006 cites W2941892493 @default.
- W4380839006 cites W2971628638 @default.
- W4380839006 cites W2982358567 @default.
- W4380839006 cites W2988621719 @default.
- W4380839006 cites W3028414831 @default.
- W4380839006 cites W3034408619 @default.
- W4380839006 cites W3034487379 @default.
- W4380839006 cites W3047687684 @default.
- W4380839006 cites W3092657053 @default.
- W4380839006 cites W3093410479 @default.
- W4380839006 cites W3093959849 @default.
- W4380839006 cites W3094002206 @default.
- W4380839006 cites W3097214441 @default.
- W4380839006 cites W3121261077 @default.
- W4380839006 cites W3134626437 @default.
- W4380839006 cites W3147809485 @default.
- W4380839006 cites W3150811281 @default.
- W4380839006 cites W3152685838 @default.
- W4380839006 cites W3164359814 @default.
- W4380839006 cites W3176422380 @default.
- W4380839006 cites W3195528925 @default.
- W4380839006 cites W3207189205 @default.
- W4380839006 cites W3207736179 @default.
- W4380839006 cites W3213708780 @default.
- W4380839006 cites W4200498254 @default.
- W4380839006 cites W4205206936 @default.
- W4380839006 cites W4205485659 @default.
- W4380839006 cites W4206564180 @default.
- W4380839006 cites W4212856659 @default.
- W4380839006 cites W4213113494 @default.
- W4380839006 cites W4213248101 @default.
- W4380839006 cites W4213378135 @default.
- W4380839006 cites W4214838030 @default.
- W4380839006 cites W4221111450 @default.
- W4380839006 cites W4224222480 @default.
- W4380839006 cites W4225518660 @default.
- W4380839006 cites W4226182805 @default.
- W4380839006 cites W4229001541 @default.
- W4380839006 cites W4242807147 @default.
- W4380839006 cites W4244307164 @default.
- W4380839006 cites W4250664506 @default.
- W4380839006 cites W4256060553 @default.
- W4380839006 cites W4281264192 @default.
- W4380839006 cites W4284978282 @default.
- W4380839006 cites W4285047168 @default.
- W4380839006 cites W4285728424 @default.
- W4380839006 cites W4297042803 @default.
- W4380839006 cites W4297922471 @default.
- W4380839006 cites W4300103171 @default.
- W4380839006 cites W4308512847 @default.
- W4380839006 cites W4309205957 @default.
- W4380839006 cites W4313343642 @default.
- W4380839006 cites W4316673098 @default.
- W4380839006 cites W4317618147 @default.
- W4380839006 cites W4318476459 @default.
- W4380839006 cites W4320517126 @default.
- W4380839006 cites W4321458286 @default.
- W4380839006 cites W4324059074 @default.
- W4380839006 cites W4353066678 @default.
- W4380839006 cites W4360857225 @default.
- W4380839006 doi "https://doi.org/10.1007/978-3-031-34728-3_9" @default.
- W4380839006 hasPublicationYear "2023" @default.
- W4380839006 type Work @default.