Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380852832> ?p ?o ?g. }
- W4380852832 endingPage "108820" @default.
- W4380852832 startingPage "108820" @default.
- W4380852832 abstract "MP-CITDSE is a package of programs which solves the time-dependent Schrödinger equation for hydrogenic and helium-like atomic systems interacting with an ultra-short laser pulse (of attosecond or femtosecond duration). The output of the computations – with some minimal processing – may be used to calculate excited populations, single and double ionisation yields, kinetic, angular and radial electron distributions, and harmonic yields. For the Helium atom, a full account of the inter-electronic correlation effects is included via a configuration interaction approach; for the time propagation of the wavefunction a spectral basis expansion on the eigenstates of the field-free Hamiltonian is used; for this reason post-processing of the expansion coefficients just after the pulse lead to simple formulas for quantities of experimental interest. Program Title: MP-CITDSE CPC Library link to program files: https://doi.org/10.17632/gv4zxmfdx3.1 Developer's repository link: https://github.com/aforembs/MP-CITDSE Licensing provisions: GPLv3 Programming language: C++ Nature of problem: The ultra-fast high-intensity laser pulses of modern experimental sources require an ab-initio theoretical treatment, as the characteristics of such pulses are generally incompatible with the established Lowest-order Perturbation Theory (LOPT) approximation. Such a treatment can be quite cumbersome to not only implement, but also describe in a clear, intuitive manner. Its inherent complexity ensures that even in its simplest form, an ab-initio TDSE solver can easily consist of several thousand lines of code. As with any project of such scope a significant amount of effort is required to keep the code up to date, running on several platforms, compilers and operating systems. As such, while the numerical problem tackled by MP-CITDSE is that of the simulation of hydrogenic and helium-like atom-laser interactions on a single node computer/workstation; its main challenges are longevity and expandability. By doing away with unnecessary abstractions within the code, using a modern standard of a widely used and performant language (C++ 17) and hosting the source code on a publicly available GitHub repository we hope that the programs provided herein prove themselves useful to many current and future AMO Physicists. Solution method: The atomic systems are considered confined in a spherical box of finite size. In the one-electron case (hydrogen) the eigenstates are calculated in a spherical coordinate system by the direct diagonalisation of the field-free Hamiltonian matrix representation on a B-splines piecewise polynomial basis expansion of the radial part of the eigenfunctions; for the two-electron case (helium) the numerically calculated one-electron eigenstates are angularly coupled to form a zero-order (uncorrelated) two-electron numerical basis; then the latter basis is further coupled via a configuration-interaction approach to eventually calculate the helium's two-electron eigenstates. Following these steps, for both systems (hydrogen and helium) the computation proceeds by expanding the time-dependent wavefunction on the corresponding field-free eigenstate basis; thus, we end up to a system of first-order ordinary differential equations (ODEs) in time for the expansion (time-dependent) coefficients; the dynamical parameters for the ODEs time propagation, namely the eigenenergies and dipole matrix elements are calculated only once prior to the ODEs propagation [2]. The structure of the propagating matrix is block tridiagonal. Additional comments including restrictions and unusual features: This paper serves as the definitive reference for the MP-CITDSE code. In this version we solve the ODEs using a Runge-Kutta-Felnberg (RKF) algorithm. Also we have restricted the code to treat hydrogen and helium but with very little effort (non-relativistic) hydrogenic and helium-like atomic systems can also be simulated. The programs are supplied with two methods of compilation, via make and cmake to ensure greater portability. L.A.A. Nikolopoulos, A package for the ab-initio calculation of one- and two-photon cross sections of two-electron atoms, using a CI B-splines method, 150 (2003) 140. L.A.A Nikolopoulos, P. Lambropoulos, Helium double ionisation signals under soft-x-ray coherent radiation, 39 (2006) 883." @default.
- W4380852832 created "2023-06-16" @default.
- W4380852832 creator A5034304120 @default.
- W4380852832 creator A5065847685 @default.
- W4380852832 date "2023-10-01" @default.
- W4380852832 modified "2023-09-27" @default.
- W4380852832 title "MP-CITDSE: A set of ab-initio programs for the simulation of hydrogenic and helium-like atom-laser interactions" @default.
- W4380852832 cites W1621473306 @default.
- W4380852832 cites W1894623165 @default.
- W4380852832 cites W1966304318 @default.
- W4380852832 cites W1971345374 @default.
- W4380852832 cites W1971718622 @default.
- W4380852832 cites W1972066733 @default.
- W4380852832 cites W1976823139 @default.
- W4380852832 cites W1978007800 @default.
- W4380852832 cites W1981187690 @default.
- W4380852832 cites W1985139192 @default.
- W4380852832 cites W2001347088 @default.
- W4380852832 cites W2003993926 @default.
- W4380852832 cites W2004487706 @default.
- W4380852832 cites W2012680701 @default.
- W4380852832 cites W2015364904 @default.
- W4380852832 cites W2020017746 @default.
- W4380852832 cites W2020820782 @default.
- W4380852832 cites W2023399024 @default.
- W4380852832 cites W2030238163 @default.
- W4380852832 cites W2033336421 @default.
- W4380852832 cites W2036858932 @default.
- W4380852832 cites W2050688777 @default.
- W4380852832 cites W2050941663 @default.
- W4380852832 cites W2052947147 @default.
- W4380852832 cites W2056162309 @default.
- W4380852832 cites W2070934029 @default.
- W4380852832 cites W2073619323 @default.
- W4380852832 cites W2074160194 @default.
- W4380852832 cites W2075950706 @default.
- W4380852832 cites W2078321764 @default.
- W4380852832 cites W2079173212 @default.
- W4380852832 cites W2082310224 @default.
- W4380852832 cites W2083082260 @default.
- W4380852832 cites W2085513452 @default.
- W4380852832 cites W2152406212 @default.
- W4380852832 cites W2222517232 @default.
- W4380852832 cites W2285248424 @default.
- W4380852832 cites W2313303691 @default.
- W4380852832 cites W2991323519 @default.
- W4380852832 doi "https://doi.org/10.1016/j.cpc.2023.108820" @default.
- W4380852832 hasPublicationYear "2023" @default.
- W4380852832 type Work @default.
- W4380852832 citedByCount "0" @default.
- W4380852832 crossrefType "journal-article" @default.
- W4380852832 hasAuthorship W4380852832A5034304120 @default.
- W4380852832 hasAuthorship W4380852832A5065847685 @default.
- W4380852832 hasBestOaLocation W43808528321 @default.
- W4380852832 hasConcept C113603373 @default.
- W4380852832 hasConcept C121332964 @default.
- W4380852832 hasConcept C126255220 @default.
- W4380852832 hasConcept C130787639 @default.
- W4380852832 hasConcept C143357915 @default.
- W4380852832 hasConcept C147120987 @default.
- W4380852832 hasConcept C158693339 @default.
- W4380852832 hasConcept C174256460 @default.
- W4380852832 hasConcept C178596936 @default.
- W4380852832 hasConcept C184779094 @default.
- W4380852832 hasConcept C2780846936 @default.
- W4380852832 hasConcept C2781442258 @default.
- W4380852832 hasConcept C33923547 @default.
- W4380852832 hasConcept C35052450 @default.
- W4380852832 hasConcept C520434653 @default.
- W4380852832 hasConcept C546029482 @default.
- W4380852832 hasConcept C62520636 @default.
- W4380852832 hasConcept C63036615 @default.
- W4380852832 hasConceptScore W4380852832C113603373 @default.
- W4380852832 hasConceptScore W4380852832C121332964 @default.
- W4380852832 hasConceptScore W4380852832C126255220 @default.
- W4380852832 hasConceptScore W4380852832C130787639 @default.
- W4380852832 hasConceptScore W4380852832C143357915 @default.
- W4380852832 hasConceptScore W4380852832C147120987 @default.
- W4380852832 hasConceptScore W4380852832C158693339 @default.
- W4380852832 hasConceptScore W4380852832C174256460 @default.
- W4380852832 hasConceptScore W4380852832C178596936 @default.
- W4380852832 hasConceptScore W4380852832C184779094 @default.
- W4380852832 hasConceptScore W4380852832C2780846936 @default.
- W4380852832 hasConceptScore W4380852832C2781442258 @default.
- W4380852832 hasConceptScore W4380852832C33923547 @default.
- W4380852832 hasConceptScore W4380852832C35052450 @default.
- W4380852832 hasConceptScore W4380852832C520434653 @default.
- W4380852832 hasConceptScore W4380852832C546029482 @default.
- W4380852832 hasConceptScore W4380852832C62520636 @default.
- W4380852832 hasConceptScore W4380852832C63036615 @default.
- W4380852832 hasFunder F4320321056 @default.
- W4380852832 hasLocation W43808528321 @default.
- W4380852832 hasOpenAccess W4380852832 @default.
- W4380852832 hasPrimaryLocation W43808528321 @default.
- W4380852832 hasRelatedWork W1547910087 @default.
- W4380852832 hasRelatedWork W1644066102 @default.
- W4380852832 hasRelatedWork W1981213797 @default.
- W4380852832 hasRelatedWork W1990161231 @default.