Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380852871> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4380852871 endingPage "120719" @default.
- W4380852871 startingPage "120719" @default.
- W4380852871 abstract "Due to the presence of redundant and irrelevant features in large-dimensional biomedical datasets, the prediction accuracy of disease diagnosis can often be decreased. Therefore, it is important to adopt feature extraction methodologies that can deal with problem structures and identify underlying data patterns. In this paper, we propose a novel approach called the Anti Coronavirus Optimized Kernel-based Softplus Extreme Learning Machine (ACO-KSELM) to accurately predict different types of skin cancer by analyzing high-dimensional datasets. To evaluate the proposed ACO-KSELM method, we used four different skin cancer image datasets: ISIC 2016, ACS, HAM10000, and PAD-UFES-20. These dermoscopic image datasets were preprocessed using Gaussian filters to remove noise and artifacts, and relevant features based on color, texture, and shape were extracted using color histogram, Haralick texture, and Hu moment extraction approaches, respectively. Finally, the proposed ACO-KSELM method accurately predicted and classified the extracted features into Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Actinic Keratosis (ACK), Seborrheic Keratosis (SEK), Bowen's disease (BOD), Melanoma (MEL), and Nevus (NEV) categories. The analytical results showed that the proposed method achieved a higher rate of prediction accuracy of about 98.9%, 98.7%, 98.6%, and 97.9% for the ISIC 2016, ACS, HAM10000, and PAD-UFES-20 datasets, respectively." @default.
- W4380852871 created "2023-06-16" @default.
- W4380852871 creator A5042820537 @default.
- W4380852871 creator A5056249576 @default.
- W4380852871 creator A5072698553 @default.
- W4380852871 creator A5077951618 @default.
- W4380852871 date "2023-06-01" @default.
- W4380852871 modified "2023-09-23" @default.
- W4380852871 title "ACO-KELM: Anti Coronavirus Optimized Kernel-based Softplus Extreme Learning Machine for Classification of Skin Cancer" @default.
- W4380852871 cites W2907688358 @default.
- W4380852871 cites W2911653980 @default.
- W4380852871 cites W2922703796 @default.
- W4380852871 cites W2948110362 @default.
- W4380852871 cites W2963853763 @default.
- W4380852871 cites W2972588473 @default.
- W4380852871 cites W2986609444 @default.
- W4380852871 cites W2994842153 @default.
- W4380852871 cites W3028742747 @default.
- W4380852871 cites W3049254768 @default.
- W4380852871 cites W3081500256 @default.
- W4380852871 cites W3087623368 @default.
- W4380852871 cites W3102785203 @default.
- W4380852871 cites W3118399063 @default.
- W4380852871 cites W3126968529 @default.
- W4380852871 cites W3127990383 @default.
- W4380852871 cites W3133847516 @default.
- W4380852871 cites W3148150040 @default.
- W4380852871 cites W3154233376 @default.
- W4380852871 cites W3167434454 @default.
- W4380852871 cites W3197723757 @default.
- W4380852871 cites W3212197959 @default.
- W4380852871 cites W4221025993 @default.
- W4380852871 cites W4224241134 @default.
- W4380852871 cites W4280576345 @default.
- W4380852871 cites W4306877173 @default.
- W4380852871 cites W4322765595 @default.
- W4380852871 cites W4365506137 @default.
- W4380852871 doi "https://doi.org/10.1016/j.eswa.2023.120719" @default.
- W4380852871 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37362255" @default.
- W4380852871 hasPublicationYear "2023" @default.
- W4380852871 type Work @default.
- W4380852871 citedByCount "0" @default.
- W4380852871 crossrefType "journal-article" @default.
- W4380852871 hasAuthorship W4380852871A5042820537 @default.
- W4380852871 hasAuthorship W4380852871A5056249576 @default.
- W4380852871 hasAuthorship W4380852871A5072698553 @default.
- W4380852871 hasAuthorship W4380852871A5077951618 @default.
- W4380852871 hasBestOaLocation W43808528711 @default.
- W4380852871 hasConcept C114614502 @default.
- W4380852871 hasConcept C115961682 @default.
- W4380852871 hasConcept C12267149 @default.
- W4380852871 hasConcept C142724271 @default.
- W4380852871 hasConcept C153180895 @default.
- W4380852871 hasConcept C154945302 @default.
- W4380852871 hasConcept C16005928 @default.
- W4380852871 hasConcept C2777845685 @default.
- W4380852871 hasConcept C2778804307 @default.
- W4380852871 hasConcept C3019992690 @default.
- W4380852871 hasConcept C33923547 @default.
- W4380852871 hasConcept C41008148 @default.
- W4380852871 hasConcept C52622490 @default.
- W4380852871 hasConcept C53533937 @default.
- W4380852871 hasConcept C71924100 @default.
- W4380852871 hasConcept C74193536 @default.
- W4380852871 hasConceptScore W4380852871C114614502 @default.
- W4380852871 hasConceptScore W4380852871C115961682 @default.
- W4380852871 hasConceptScore W4380852871C12267149 @default.
- W4380852871 hasConceptScore W4380852871C142724271 @default.
- W4380852871 hasConceptScore W4380852871C153180895 @default.
- W4380852871 hasConceptScore W4380852871C154945302 @default.
- W4380852871 hasConceptScore W4380852871C16005928 @default.
- W4380852871 hasConceptScore W4380852871C2777845685 @default.
- W4380852871 hasConceptScore W4380852871C2778804307 @default.
- W4380852871 hasConceptScore W4380852871C3019992690 @default.
- W4380852871 hasConceptScore W4380852871C33923547 @default.
- W4380852871 hasConceptScore W4380852871C41008148 @default.
- W4380852871 hasConceptScore W4380852871C52622490 @default.
- W4380852871 hasConceptScore W4380852871C53533937 @default.
- W4380852871 hasConceptScore W4380852871C71924100 @default.
- W4380852871 hasConceptScore W4380852871C74193536 @default.
- W4380852871 hasLocation W43808528711 @default.
- W4380852871 hasLocation W43808528712 @default.
- W4380852871 hasOpenAccess W4380852871 @default.
- W4380852871 hasPrimaryLocation W43808528711 @default.
- W4380852871 hasRelatedWork W2087874231 @default.
- W4380852871 hasRelatedWork W2126100045 @default.
- W4380852871 hasRelatedWork W2141705618 @default.
- W4380852871 hasRelatedWork W2336974148 @default.
- W4380852871 hasRelatedWork W2348964713 @default.
- W4380852871 hasRelatedWork W2381773606 @default.
- W4380852871 hasRelatedWork W2550539038 @default.
- W4380852871 hasRelatedWork W2187500075 @default.
- W4380852871 hasRelatedWork W2345184372 @default.
- W4380852871 hasRelatedWork W3127217315 @default.
- W4380852871 isParatext "false" @default.
- W4380852871 isRetracted "false" @default.
- W4380852871 workType "article" @default.