Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380853119> ?p ?o ?g. }
- W4380853119 endingPage "138022" @default.
- W4380853119 startingPage "138022" @default.
- W4380853119 abstract "We study vector-tensor theories in which a 4-dimensional vector field Aμ is coupled to a vector quantity Jμ, which is expressed in terms of Aμ and a metric tensor gμν. The divergence of Jμ is equivalent to a Gauss-Bonnet (GB) term. We show that an interacting Lagrangian of the form f(X)AμJμ, where f is an arbitrary function of X=−(1/2)AμAμ, belongs to a scheme of beyond generalized Proca theories. For f(X)=α=constant, this interacting Lagrangian reduces to a particular class of generalized Proca theories. We apply the latter coupling to a static and spherically symmetric vacuum configuration by incorporating the Einstein-Hilbert term, Maxwell scalar, and vector mass term ηX (η is a constant). Under an expansion of the small coupling constant α with η≠0, we derive hairy black hole solutions endowed with nonvanishing temporal and radial vector field profiles. The asymptotic properties of solutions around the horizon and at spatial infinity are different from those of hairy black holes present in scalar-GB theories. We also show that black hole solutions without the vector mass term, i.e., η=0, are prone to ghost instability of odd-parity perturbations." @default.
- W4380853119 created "2023-06-16" @default.
- W4380853119 creator A5013481498 @default.
- W4380853119 creator A5090382548 @default.
- W4380853119 date "2023-08-01" @default.
- W4380853119 modified "2023-10-10" @default.
- W4380853119 title "Coupled vector Gauss-Bonnet theories and hairy black holes" @default.
- W4380853119 cites W1261499239 @default.
- W4380853119 cites W1966780261 @default.
- W4380853119 cites W1968519690 @default.
- W4380853119 cites W1969449998 @default.
- W4380853119 cites W1970074931 @default.
- W4380853119 cites W1988270939 @default.
- W4380853119 cites W2003308565 @default.
- W4380853119 cites W2008102064 @default.
- W4380853119 cites W2015947787 @default.
- W4380853119 cites W2019306460 @default.
- W4380853119 cites W2034240244 @default.
- W4380853119 cites W2036853133 @default.
- W4380853119 cites W2036943595 @default.
- W4380853119 cites W2037023898 @default.
- W4380853119 cites W2039561427 @default.
- W4380853119 cites W2040558894 @default.
- W4380853119 cites W2057054902 @default.
- W4380853119 cites W2058755739 @default.
- W4380853119 cites W2062912482 @default.
- W4380853119 cites W2077438050 @default.
- W4380853119 cites W2080310149 @default.
- W4380853119 cites W2101295769 @default.
- W4380853119 cites W2102639000 @default.
- W4380853119 cites W2102655262 @default.
- W4380853119 cites W2104121390 @default.
- W4380853119 cites W2115571595 @default.
- W4380853119 cites W2116923776 @default.
- W4380853119 cites W2124225063 @default.
- W4380853119 cites W2129033751 @default.
- W4380853119 cites W2131279590 @default.
- W4380853119 cites W2139274219 @default.
- W4380853119 cites W2149942961 @default.
- W4380853119 cites W2166436681 @default.
- W4380853119 cites W2189113858 @default.
- W4380853119 cites W2258712304 @default.
- W4380853119 cites W2333502277 @default.
- W4380853119 cites W2398470767 @default.
- W4380853119 cites W2408638754 @default.
- W4380853119 cites W2605065010 @default.
- W4380853119 cites W2609325368 @default.
- W4380853119 cites W2617589880 @default.
- W4380853119 cites W2767486812 @default.
- W4380853119 cites W2767864485 @default.
- W4380853119 cites W2789529951 @default.
- W4380853119 cites W2799109072 @default.
- W4380853119 cites W2946040383 @default.
- W4380853119 cites W3103514505 @default.
- W4380853119 cites W3103753104 @default.
- W4380853119 cites W3104960645 @default.
- W4380853119 cites W3105229939 @default.
- W4380853119 cites W3123535017 @default.
- W4380853119 cites W3125990348 @default.
- W4380853119 cites W3135554006 @default.
- W4380853119 cites W3209113705 @default.
- W4380853119 cites W4319303633 @default.
- W4380853119 doi "https://doi.org/10.1016/j.physletb.2023.138022" @default.
- W4380853119 hasPublicationYear "2023" @default.
- W4380853119 type Work @default.
- W4380853119 citedByCount "1" @default.
- W4380853119 crossrefType "journal-article" @default.
- W4380853119 hasAuthorship W4380853119A5013481498 @default.
- W4380853119 hasAuthorship W4380853119A5090382548 @default.
- W4380853119 hasBestOaLocation W43808531191 @default.
- W4380853119 hasConcept C104954878 @default.
- W4380853119 hasConcept C110521144 @default.
- W4380853119 hasConcept C121332964 @default.
- W4380853119 hasConcept C155281189 @default.
- W4380853119 hasConcept C183276030 @default.
- W4380853119 hasConcept C2524010 @default.
- W4380853119 hasConcept C31258907 @default.
- W4380853119 hasConcept C33923547 @default.
- W4380853119 hasConcept C37914503 @default.
- W4380853119 hasConcept C41008148 @default.
- W4380853119 hasConcept C42519931 @default.
- W4380853119 hasConcept C50341732 @default.
- W4380853119 hasConcept C57691317 @default.
- W4380853119 hasConcept C57879066 @default.
- W4380853119 hasConcept C62520636 @default.
- W4380853119 hasConcept C74172769 @default.
- W4380853119 hasConcept C74650414 @default.
- W4380853119 hasConcept C89305328 @default.
- W4380853119 hasConcept C91188154 @default.
- W4380853119 hasConceptScore W4380853119C104954878 @default.
- W4380853119 hasConceptScore W4380853119C110521144 @default.
- W4380853119 hasConceptScore W4380853119C121332964 @default.
- W4380853119 hasConceptScore W4380853119C155281189 @default.
- W4380853119 hasConceptScore W4380853119C183276030 @default.
- W4380853119 hasConceptScore W4380853119C2524010 @default.
- W4380853119 hasConceptScore W4380853119C31258907 @default.
- W4380853119 hasConceptScore W4380853119C33923547 @default.
- W4380853119 hasConceptScore W4380853119C37914503 @default.