Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380853155> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4380853155 endingPage "9" @default.
- W4380853155 startingPage "1" @default.
- W4380853155 abstract "Recent advancements in technology have propelled the applications of artificial intelligence (AI) in various sectors, including healthcare. Medical imaging has benefited from AI by reducing radiation risks through algorithms used in examinations, referral protocols, and scan justification. This research work assessed the level of knowledge and awareness of 225 second- to fourth-year medical imaging students from public universities in Ghana about AI and its prospects in medical imaging.This was a cross-sectional quantitative study design that used a closed-ended questionnaire with dichotomous questions, designed on Google Forms, and distributed to students through their various class WhatsApp platforms. Responses were entered into an Excel spreadsheet and analyzed with the Statistical Package for the Social Sciences (SPSS) software version 25.0 and Microsoft Excel 2016 version.The response rate was 80.44% (181/225), out of which 97 (53.6%) were male, 82 (45.3%) were female, and 2 (1.1%) preferred not to disclose their gender. Among these, 133 (73.5%) knew that AI had been incorporated into current imaging modalities, and 143 (79.0%) were aware of AI's emergence in medical imaging. However, only 97 (53.6%) were aware of the gradual emergence of AI in the radiography industry in Ghana. Furthermore, 160 people (88.4%) expressed an interest in learning more about AI and its applications in medical imaging. Less than one-third (32%) knew about the general basic application of AI in patient positioning and protocol selection. And nearly two-thirds (65%) either felt threatened or unsure about their job security due to the incorporation of AI technology in medical imaging equipment. Less than half (38% and 43%) of the participants acknowledged that current clinical internships helped them appreciate the role of AI in medical imaging or increase their level of knowledge in AI, respectively. Discussion. Generally, the findings indicate that medical imaging students have fair knowledge about AI and its prospects in medical imaging but lack in-depth knowledge. However, they lacked the requisite awareness of AI's emergence in radiography practice in Ghana. They also showed a lack of knowledge of some general basic applications of AI in modern imaging equipment. Additionally, they showed some level of misconception about the role AI plays in the job of the radiographer.Decision-makers should implement educational policies that integrate AI education into the current medical imaging curriculum to prepare students for the future. Students should also be practically exposed to the various incorporations of AI technology in current medical imaging equipment." @default.
- W4380853155 created "2023-06-16" @default.
- W4380853155 creator A5025126671 @default.
- W4380853155 creator A5055201957 @default.
- W4380853155 creator A5067057886 @default.
- W4380853155 date "2023-06-15" @default.
- W4380853155 modified "2023-09-23" @default.
- W4380853155 title "Assessing the Level of Understanding (Knowledge) and Awareness of Diagnostic Imaging Students in Ghana on Artificial Intelligence and Its Applications in Medical Imaging" @default.
- W4380853155 cites W2120751691 @default.
- W4380853155 cites W2475249440 @default.
- W4380853155 cites W2768491633 @default.
- W4380853155 cites W2803760365 @default.
- W4380853155 cites W2855469196 @default.
- W4380853155 cites W2893693469 @default.
- W4380853155 cites W2900248733 @default.
- W4380853155 cites W2911835721 @default.
- W4380853155 cites W2986199283 @default.
- W4380853155 cites W2988799679 @default.
- W4380853155 cites W3012668909 @default.
- W4380853155 cites W3021285554 @default.
- W4380853155 cites W3038622338 @default.
- W4380853155 cites W3081234923 @default.
- W4380853155 cites W3087281395 @default.
- W4380853155 cites W3092635044 @default.
- W4380853155 cites W3097223611 @default.
- W4380853155 cites W3117760845 @default.
- W4380853155 cites W3130553520 @default.
- W4380853155 cites W3136664331 @default.
- W4380853155 cites W3145891727 @default.
- W4380853155 cites W3147329173 @default.
- W4380853155 cites W3167716247 @default.
- W4380853155 cites W3180094577 @default.
- W4380853155 cites W3198724198 @default.
- W4380853155 cites W4200218394 @default.
- W4380853155 cites W4205338526 @default.
- W4380853155 cites W4221097940 @default.
- W4380853155 cites W4285719527 @default.
- W4380853155 cites W4288063574 @default.
- W4380853155 doi "https://doi.org/10.1155/2023/4704342" @default.
- W4380853155 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37362195" @default.
- W4380853155 hasPublicationYear "2023" @default.
- W4380853155 type Work @default.
- W4380853155 citedByCount "1" @default.
- W4380853155 countsByYear W43808531552023 @default.
- W4380853155 crossrefType "journal-article" @default.
- W4380853155 hasAuthorship W4380853155A5025126671 @default.
- W4380853155 hasAuthorship W4380853155A5055201957 @default.
- W4380853155 hasAuthorship W4380853155A5067057886 @default.
- W4380853155 hasBestOaLocation W43808531551 @default.
- W4380853155 hasConcept C111919701 @default.
- W4380853155 hasConcept C126838900 @default.
- W4380853155 hasConcept C154945302 @default.
- W4380853155 hasConcept C19527891 @default.
- W4380853155 hasConcept C2776135927 @default.
- W4380853155 hasConcept C3019730874 @default.
- W4380853155 hasConcept C31601959 @default.
- W4380853155 hasConcept C41008148 @default.
- W4380853155 hasConcept C509550671 @default.
- W4380853155 hasConcept C512399662 @default.
- W4380853155 hasConcept C71924100 @default.
- W4380853155 hasConceptScore W4380853155C111919701 @default.
- W4380853155 hasConceptScore W4380853155C126838900 @default.
- W4380853155 hasConceptScore W4380853155C154945302 @default.
- W4380853155 hasConceptScore W4380853155C19527891 @default.
- W4380853155 hasConceptScore W4380853155C2776135927 @default.
- W4380853155 hasConceptScore W4380853155C3019730874 @default.
- W4380853155 hasConceptScore W4380853155C31601959 @default.
- W4380853155 hasConceptScore W4380853155C41008148 @default.
- W4380853155 hasConceptScore W4380853155C509550671 @default.
- W4380853155 hasConceptScore W4380853155C512399662 @default.
- W4380853155 hasConceptScore W4380853155C71924100 @default.
- W4380853155 hasLocation W43808531551 @default.
- W4380853155 hasLocation W43808531552 @default.
- W4380853155 hasOpenAccess W4380853155 @default.
- W4380853155 hasPrimaryLocation W43808531551 @default.
- W4380853155 hasRelatedWork W2020075522 @default.
- W4380853155 hasRelatedWork W2042489430 @default.
- W4380853155 hasRelatedWork W2053221007 @default.
- W4380853155 hasRelatedWork W2059961661 @default.
- W4380853155 hasRelatedWork W2899084033 @default.
- W4380853155 hasRelatedWork W3109546874 @default.
- W4380853155 hasRelatedWork W3155901224 @default.
- W4380853155 hasRelatedWork W4240222047 @default.
- W4380853155 hasRelatedWork W4281780675 @default.
- W4380853155 hasRelatedWork W4379538557 @default.
- W4380853155 hasVolume "2023" @default.
- W4380853155 isParatext "false" @default.
- W4380853155 isRetracted "false" @default.
- W4380853155 workType "article" @default.