Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380854473> ?p ?o ?g. }
- W4380854473 endingPage "11454" @default.
- W4380854473 startingPage "11443" @default.
- W4380854473 abstract "Solution-processed few-layer graphene flakes, dispensed to rotating and sliding contacts via liquid dispersions, are gaining increasing attention as friction modifiers to achieve low friction and wear at technologically relevant interfaces. Vanishing friction states, i.e., superlubricity, have been documented for nearly-ideal nanoscale contacts lubricated by individual graphene flakes. However, there is no clear understanding if superlubricity might persist for larger and morphologically disordered contacts, as those typically obtained by incorporating wet-transferred solution-processed flakes into realistic microscale contact junctions. In this study, we address the friction performance of solution-processed graphene flakes by means of colloidal probe atomic force microscopy. We use a state-of-the-art additive-free aqueous dispersion to coat micrometric silica beads, which are then sled under ambient conditions against prototypical material substrates, namely, graphite and the transition metal dichalcogenides (TMDs) MoS2 and WS2. High resolution microscopy proves that the random assembly of the wet-transferred flakes over the silica probes results into an inhomogeneous coating, formed by graphene patches that control contact mechanics through tens-of-nanometers tall protrusions. Atomic-scale friction force spectroscopy reveals that dissipation proceeds via stick-slip instabilities. Load-controlled transitions from dissipative stick-slip to superlubric continuous sliding may occur for the graphene-graphite homojunctions, whereas single- and multiple-slips dissipative dynamics characterizes the graphene-TMD heterojunctions. Systematic numerical simulations demonstrate that the thermally activated single-asperity Prandtl-Tomlinson model comprehensively describes friction experiments involving different graphene-coated colloidal probes, material substrates, and sliding regimes. Our work establishes experimental procedures and key concepts that enable mesoscale superlubricity by wet-transferred liquid-processed graphene flakes. Together with the rise of scalable material printing techniques, our findings support the use of such nanomaterials to approach superlubricity in micro electromechanical systems." @default.
- W4380854473 created "2023-06-16" @default.
- W4380854473 creator A5004963579 @default.
- W4380854473 creator A5056343752 @default.
- W4380854473 creator A5063607348 @default.
- W4380854473 creator A5070099727 @default.
- W4380854473 creator A5080006929 @default.
- W4380854473 creator A5080360476 @default.
- W4380854473 date "2023-06-15" @default.
- W4380854473 modified "2023-10-01" @default.
- W4380854473 title "Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices" @default.
- W4380854473 cites W1798922910 @default.
- W4380854473 cites W1972345909 @default.
- W4380854473 cites W1987401751 @default.
- W4380854473 cites W1988225690 @default.
- W4380854473 cites W2014707390 @default.
- W4380854473 cites W2026112996 @default.
- W4380854473 cites W2027356165 @default.
- W4380854473 cites W2038729374 @default.
- W4380854473 cites W2044967871 @default.
- W4380854473 cites W2047205370 @default.
- W4380854473 cites W2065954798 @default.
- W4380854473 cites W2072169100 @default.
- W4380854473 cites W2084832325 @default.
- W4380854473 cites W2088204366 @default.
- W4380854473 cites W2093192991 @default.
- W4380854473 cites W2119157982 @default.
- W4380854473 cites W2147096980 @default.
- W4380854473 cites W2153110626 @default.
- W4380854473 cites W2160842288 @default.
- W4380854473 cites W2171258606 @default.
- W4380854473 cites W2231868853 @default.
- W4380854473 cites W2235679284 @default.
- W4380854473 cites W2293941587 @default.
- W4380854473 cites W2299506008 @default.
- W4380854473 cites W2316769685 @default.
- W4380854473 cites W2325933120 @default.
- W4380854473 cites W2337286902 @default.
- W4380854473 cites W2465814590 @default.
- W4380854473 cites W2473250661 @default.
- W4380854473 cites W2559254989 @default.
- W4380854473 cites W2571227791 @default.
- W4380854473 cites W2588236781 @default.
- W4380854473 cites W2592160648 @default.
- W4380854473 cites W2618898766 @default.
- W4380854473 cites W2643144590 @default.
- W4380854473 cites W2751503110 @default.
- W4380854473 cites W2774959935 @default.
- W4380854473 cites W2782131884 @default.
- W4380854473 cites W2784368966 @default.
- W4380854473 cites W2788346713 @default.
- W4380854473 cites W2792523789 @default.
- W4380854473 cites W2806208654 @default.
- W4380854473 cites W2884214282 @default.
- W4380854473 cites W2901325622 @default.
- W4380854473 cites W2916354520 @default.
- W4380854473 cites W2923687757 @default.
- W4380854473 cites W2927113887 @default.
- W4380854473 cites W2954186218 @default.
- W4380854473 cites W2955397831 @default.
- W4380854473 cites W2997118488 @default.
- W4380854473 cites W2998241881 @default.
- W4380854473 cites W3003433231 @default.
- W4380854473 cites W3004145327 @default.
- W4380854473 cites W3011345051 @default.
- W4380854473 cites W3029557210 @default.
- W4380854473 cites W3032023589 @default.
- W4380854473 cites W3087429898 @default.
- W4380854473 cites W3100388096 @default.
- W4380854473 cites W3118920013 @default.
- W4380854473 cites W3134862192 @default.
- W4380854473 cites W3136833096 @default.
- W4380854473 cites W3143623306 @default.
- W4380854473 cites W3180103903 @default.
- W4380854473 cites W3185185171 @default.
- W4380854473 cites W3197836530 @default.
- W4380854473 cites W3199521343 @default.
- W4380854473 cites W4200159770 @default.
- W4380854473 cites W4293162296 @default.
- W4380854473 cites W4300537830 @default.
- W4380854473 cites W2978326819 @default.
- W4380854473 doi "https://doi.org/10.1021/acsanm.3c01477" @default.
- W4380854473 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37469503" @default.
- W4380854473 hasPublicationYear "2023" @default.
- W4380854473 type Work @default.
- W4380854473 citedByCount "1" @default.
- W4380854473 countsByYear W43808544732023 @default.
- W4380854473 crossrefType "journal-article" @default.
- W4380854473 hasAuthorship W4380854473A5004963579 @default.
- W4380854473 hasAuthorship W4380854473A5056343752 @default.
- W4380854473 hasAuthorship W4380854473A5063607348 @default.
- W4380854473 hasAuthorship W4380854473A5070099727 @default.
- W4380854473 hasAuthorship W4380854473A5080006929 @default.
- W4380854473 hasAuthorship W4380854473A5080360476 @default.
- W4380854473 hasBestOaLocation W43808544731 @default.
- W4380854473 hasConcept C102951782 @default.
- W4380854473 hasConcept C121332964 @default.
- W4380854473 hasConcept C135402231 @default.