Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380880069> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4380880069 abstract "Abstract Defects in the welds degrade the quality of the weld. Weld defect identification is a challenging task in the industry because of the wide range of weld imperfections. Weld defect detection using radiographic images is an effective technique for achieving good weld quality in shipbuilding and aerospace applications. Foreign inclusions, cracks and pores are examples of welding joint imperfections. Several appropriate computer-based image processing techniques have made the detection of weld defects possible. It is challenging because weld imperfection can show various sizes, shapes, contrasts and locations in radiography images. The accuracy of this inspection process is more dependent on various external factors and is also time-consuming. Automatic weld defect detection is needed by analyzing the images obtained directly from digital radiographic systems. This paper uses a unique image-based approach to a small batch of X-ray imaging datasets to investigate a potential solution for weld defect identification. This article compares a deep learning network's performance for various parameter and hyper-parameter combinations. Also it compares the traditional approaches of defect detection using manual inspection method, feature-based defect identification, and finally deep - learning based approach on several types of weld defects in various industrial applications. This comparative analysis concludes that deep learning-based approaches have achieved more accuracy as compared to conventional techniques. This research paper also highlights a few challenges and future directions in welding area." @default.
- W4380880069 created "2023-06-17" @default.
- W4380880069 creator A5032176881 @default.
- W4380880069 creator A5066255504 @default.
- W4380880069 creator A5069475953 @default.
- W4380880069 creator A5079627521 @default.
- W4380880069 date "2023-06-16" @default.
- W4380880069 modified "2023-09-23" @default.
- W4380880069 title "Weld defect identification and characterization in radiographic images using deep learning: Review" @default.
- W4380880069 doi "https://doi.org/10.1088/2631-8695/acdf3f" @default.
- W4380880069 hasPublicationYear "2023" @default.
- W4380880069 type Work @default.
- W4380880069 citedByCount "0" @default.
- W4380880069 crossrefType "journal-article" @default.
- W4380880069 hasAuthorship W4380880069A5032176881 @default.
- W4380880069 hasAuthorship W4380880069A5066255504 @default.
- W4380880069 hasAuthorship W4380880069A5069475953 @default.
- W4380880069 hasAuthorship W4380880069A5079627521 @default.
- W4380880069 hasBestOaLocation W43808800691 @default.
- W4380880069 hasConcept C102758585 @default.
- W4380880069 hasConcept C108583219 @default.
- W4380880069 hasConcept C111919701 @default.
- W4380880069 hasConcept C115961682 @default.
- W4380880069 hasConcept C116834253 @default.
- W4380880069 hasConcept C126838900 @default.
- W4380880069 hasConcept C127413603 @default.
- W4380880069 hasConcept C138885662 @default.
- W4380880069 hasConcept C146978453 @default.
- W4380880069 hasConcept C153180895 @default.
- W4380880069 hasConcept C154945302 @default.
- W4380880069 hasConcept C167740415 @default.
- W4380880069 hasConcept C19474535 @default.
- W4380880069 hasConcept C2776401178 @default.
- W4380880069 hasConcept C2781305912 @default.
- W4380880069 hasConcept C31972630 @default.
- W4380880069 hasConcept C36454342 @default.
- W4380880069 hasConcept C41008148 @default.
- W4380880069 hasConcept C41895202 @default.
- W4380880069 hasConcept C56529433 @default.
- W4380880069 hasConcept C59822182 @default.
- W4380880069 hasConcept C71924100 @default.
- W4380880069 hasConcept C78519656 @default.
- W4380880069 hasConcept C86803240 @default.
- W4380880069 hasConcept C9417928 @default.
- W4380880069 hasConcept C98045186 @default.
- W4380880069 hasConceptScore W4380880069C102758585 @default.
- W4380880069 hasConceptScore W4380880069C108583219 @default.
- W4380880069 hasConceptScore W4380880069C111919701 @default.
- W4380880069 hasConceptScore W4380880069C115961682 @default.
- W4380880069 hasConceptScore W4380880069C116834253 @default.
- W4380880069 hasConceptScore W4380880069C126838900 @default.
- W4380880069 hasConceptScore W4380880069C127413603 @default.
- W4380880069 hasConceptScore W4380880069C138885662 @default.
- W4380880069 hasConceptScore W4380880069C146978453 @default.
- W4380880069 hasConceptScore W4380880069C153180895 @default.
- W4380880069 hasConceptScore W4380880069C154945302 @default.
- W4380880069 hasConceptScore W4380880069C167740415 @default.
- W4380880069 hasConceptScore W4380880069C19474535 @default.
- W4380880069 hasConceptScore W4380880069C2776401178 @default.
- W4380880069 hasConceptScore W4380880069C2781305912 @default.
- W4380880069 hasConceptScore W4380880069C31972630 @default.
- W4380880069 hasConceptScore W4380880069C36454342 @default.
- W4380880069 hasConceptScore W4380880069C41008148 @default.
- W4380880069 hasConceptScore W4380880069C41895202 @default.
- W4380880069 hasConceptScore W4380880069C56529433 @default.
- W4380880069 hasConceptScore W4380880069C59822182 @default.
- W4380880069 hasConceptScore W4380880069C71924100 @default.
- W4380880069 hasConceptScore W4380880069C78519656 @default.
- W4380880069 hasConceptScore W4380880069C86803240 @default.
- W4380880069 hasConceptScore W4380880069C9417928 @default.
- W4380880069 hasConceptScore W4380880069C98045186 @default.
- W4380880069 hasLocation W43808800691 @default.
- W4380880069 hasOpenAccess W4380880069 @default.
- W4380880069 hasPrimaryLocation W43808800691 @default.
- W4380880069 hasRelatedWork W2181924671 @default.
- W4380880069 hasRelatedWork W2188902012 @default.
- W4380880069 hasRelatedWork W2306709780 @default.
- W4380880069 hasRelatedWork W2355782345 @default.
- W4380880069 hasRelatedWork W2389079283 @default.
- W4380880069 hasRelatedWork W2961208273 @default.
- W4380880069 hasRelatedWork W3215274586 @default.
- W4380880069 hasRelatedWork W4226017549 @default.
- W4380880069 hasRelatedWork W4239631566 @default.
- W4380880069 hasRelatedWork W170518433 @default.
- W4380880069 isParatext "false" @default.
- W4380880069 isRetracted "false" @default.
- W4380880069 workType "article" @default.