Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380881417> ?p ?o ?g. }
- W4380881417 endingPage "61024" @default.
- W4380881417 startingPage "61013" @default.
- W4380881417 abstract "Automatic modulation classification (AMC) is becoming a promising technique for future adaptive wireless transceiver systems. The existing blind modulation classification (BMC) methods for orthogonal frequency division multiplexing (OFDM) fail to achieve the required performance by using statistical-based methods. Thus, the modulation classification research community is trying to adopt the deep learning (DL) method to improve the modulation classification accuracy. However, most of the existing DL methods for AMC of OFDM that involve the extraction of statistical features from the signal do not work for adaptive transceiver systems where the signal parameters are changed dynamically. In this paper, we design and implement AMC for adaptive OFDM systems by using a convolutional neural network (CNN) with residual learning. The proposed AMC can identify the modulation format of the received OFDM signal with different number of subcarriers, randomized carrier frequency offset (CFO), symbol timing offset (STO), phase offset, and unknown channel state information. We use residual learning to mitigate the effect of varying CFO, STO, and AWGN noise on the received OFDM signal. A larger pool of modulation schemes such as binary phase-shift keying (BPSK), quadrature PSK (QPSK), offset QPSK, <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$pi $ </tex-math></inline-formula> /4-QPSK, minimum shift keying, 8-PSK, 16-quadrature amplitude modulation (QAM), and 64-QAM are being considered for the proposed AMC for OFDM system in a dynamic environment. The performance and complexity of the proposed AMC are compared with the existing statistical feature-based and DL-based approaches. The proposed AMC for the OFDM system is also verified on the real-time data set generated from the universal software radio peripheral testbed setup." @default.
- W4380881417 created "2023-06-17" @default.
- W4380881417 creator A5059645448 @default.
- W4380881417 creator A5063932696 @default.
- W4380881417 creator A5069214588 @default.
- W4380881417 date "2023-01-01" @default.
- W4380881417 modified "2023-10-12" @default.
- W4380881417 title "Automatic Modulation Classification for Adaptive OFDM Systems Using Convolutional Neural Networks With Residual Learning" @default.
- W4380881417 cites W1677182931 @default.
- W4380881417 cites W1965987318 @default.
- W4380881417 cites W1977975207 @default.
- W4380881417 cites W1978712645 @default.
- W4380881417 cites W2004915807 @default.
- W4380881417 cites W2005956500 @default.
- W4380881417 cites W2032783947 @default.
- W4380881417 cites W2035328597 @default.
- W4380881417 cites W2039010812 @default.
- W4380881417 cites W2071707134 @default.
- W4380881417 cites W2163922914 @default.
- W4380881417 cites W2170778725 @default.
- W4380881417 cites W2171661116 @default.
- W4380881417 cites W2194775991 @default.
- W4380881417 cites W2272847350 @default.
- W4380881417 cites W2508457857 @default.
- W4380881417 cites W2580817561 @default.
- W4380881417 cites W2606327398 @default.
- W4380881417 cites W2616108305 @default.
- W4380881417 cites W2734408173 @default.
- W4380881417 cites W2734908518 @default.
- W4380881417 cites W2773170971 @default.
- W4380881417 cites W2884089434 @default.
- W4380881417 cites W2893465991 @default.
- W4380881417 cites W2916238263 @default.
- W4380881417 cites W2940183989 @default.
- W4380881417 cites W2968699891 @default.
- W4380881417 cites W2983690131 @default.
- W4380881417 cites W3008026851 @default.
- W4380881417 cites W3008441132 @default.
- W4380881417 cites W3010976968 @default.
- W4380881417 cites W3036851434 @default.
- W4380881417 cites W3045439457 @default.
- W4380881417 cites W3091225957 @default.
- W4380881417 cites W3104028856 @default.
- W4380881417 cites W3173681813 @default.
- W4380881417 cites W3198217630 @default.
- W4380881417 cites W3202901858 @default.
- W4380881417 cites W4248350653 @default.
- W4380881417 doi "https://doi.org/10.1109/access.2023.3286939" @default.
- W4380881417 hasPublicationYear "2023" @default.
- W4380881417 type Work @default.
- W4380881417 citedByCount "0" @default.
- W4380881417 crossrefType "journal-article" @default.
- W4380881417 hasAuthorship W4380881417A5059645448 @default.
- W4380881417 hasAuthorship W4380881417A5063932696 @default.
- W4380881417 hasAuthorship W4380881417A5069214588 @default.
- W4380881417 hasBestOaLocation W43808814171 @default.
- W4380881417 hasConcept C107038049 @default.
- W4380881417 hasConcept C11413529 @default.
- W4380881417 hasConcept C123079801 @default.
- W4380881417 hasConcept C127162648 @default.
- W4380881417 hasConcept C127413603 @default.
- W4380881417 hasConcept C138885662 @default.
- W4380881417 hasConcept C185837786 @default.
- W4380881417 hasConcept C186378180 @default.
- W4380881417 hasConcept C24326235 @default.
- W4380881417 hasConcept C2776542216 @default.
- W4380881417 hasConcept C32409245 @default.
- W4380881417 hasConcept C40409654 @default.
- W4380881417 hasConcept C41008148 @default.
- W4380881417 hasConcept C56296756 @default.
- W4380881417 hasConcept C59030546 @default.
- W4380881417 hasConcept C76155785 @default.
- W4380881417 hasConceptScore W4380881417C107038049 @default.
- W4380881417 hasConceptScore W4380881417C11413529 @default.
- W4380881417 hasConceptScore W4380881417C123079801 @default.
- W4380881417 hasConceptScore W4380881417C127162648 @default.
- W4380881417 hasConceptScore W4380881417C127413603 @default.
- W4380881417 hasConceptScore W4380881417C138885662 @default.
- W4380881417 hasConceptScore W4380881417C185837786 @default.
- W4380881417 hasConceptScore W4380881417C186378180 @default.
- W4380881417 hasConceptScore W4380881417C24326235 @default.
- W4380881417 hasConceptScore W4380881417C2776542216 @default.
- W4380881417 hasConceptScore W4380881417C32409245 @default.
- W4380881417 hasConceptScore W4380881417C40409654 @default.
- W4380881417 hasConceptScore W4380881417C41008148 @default.
- W4380881417 hasConceptScore W4380881417C56296756 @default.
- W4380881417 hasConceptScore W4380881417C59030546 @default.
- W4380881417 hasConceptScore W4380881417C76155785 @default.
- W4380881417 hasFunder F4320325255 @default.
- W4380881417 hasFunder F4320334771 @default.
- W4380881417 hasLocation W43808814171 @default.
- W4380881417 hasOpenAccess W4380881417 @default.
- W4380881417 hasPrimaryLocation W43808814171 @default.
- W4380881417 hasRelatedWork W2134289508 @default.
- W4380881417 hasRelatedWork W2142381953 @default.
- W4380881417 hasRelatedWork W2384013687 @default.
- W4380881417 hasRelatedWork W2903758664 @default.
- W4380881417 hasRelatedWork W2994977020 @default.