Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380883602> ?p ?o ?g. }
- W4380883602 endingPage "122350" @default.
- W4380883602 startingPage "122350" @default.
- W4380883602 abstract "Nanofluids (NFs) are state-of-the-art engineered promising properties soft materials which found vital applications in thermal management and electrical insulation, and also gaining much attention in the advances of soft optoelectronic and microelectronic device technologies. The longer-time functionality of the NF material depends on particle suspension stability which can be maintained up to some extent with the addition of appropriate surfactants. Here, we report the promising properties of the semiconductor NF (SNF) samples consisting of a highly rich ethylene glycol (EG) mixture with glycerol (Gly) (90/10 vol%) as base fluid, zinc oxide (ZnO) nanosuspension, and poly(vinyl pyrrolidone) (PVP) surfactant. These formulated 90EG + 10Gly/x wt% (ZnO + PVP) SNFs with varying concentrations (x wt%) of ZnO and PVP are characterized by employing ultraviolet-visible (UV–Vis) spectrophotometer (wavelength range 200–800 nm), precision inductance-capacitance-resistance (LCR) meter (frequency range 50 Hz to 1 MHz), and rotational rheometer (shear rate range 13–132 s−1). The UV–Vis absorbance spectra, recorded on the freshly prepared and aged SNF samples, confirmed that the added PVP enhances longer time suspension stability for ZnO nanoparticles in the H-bonded 90EG + 10Gly viscous base fluid, and also promoted the photosensitivity, electronic transition, and radiation blocking performance of these materials. The dielectric spectra revealed a huge contribution of the electrode and interfacial polarization processes to the dielectric permittivity of the SNFs at low frequencies and their dynamics is explored from the intense relaxation peaks observed in the loss angle tangent spectra. The higher experimental frequency range dielectric permittivity remains frequency independent and it is marginally affected by the ZnO and PVP concentrations in these SNFs, at 298.15 K. The electric modulus and impedance spectra of these SNFs are also provided and analyzed for the charge conductivity and interfacial relaxation processes. The ac electrical conductivity of these materials obeys the power law behaviour along with the dc conductivity part in the range from 5.4 to 6.8 × 10–7 S⋅cm−1. The rheological measurements on these SNFs, in the 303.15 K to 323.15 K, categorized them as Newtonian-type fluids with a considerable increase in dynamic viscosity by PVP dissolution. These materials showed the Arrhenius behaviour of viscous flow having activation energies in the range of 25–27 kJ⋅mol−1. The experimental results of various techniques on these green-formulated SNFs revealed their multifunctionality with great potential for the future generation of soft device technologies, in addition to highlighting their current applications of manageable heat transfer in the flow systems." @default.
- W4380883602 created "2023-06-17" @default.
- W4380883602 creator A5030537643 @default.
- W4380883602 creator A5049811504 @default.
- W4380883602 date "2023-09-01" @default.
- W4380883602 modified "2023-09-27" @default.
- W4380883602 title "Effects of PVP surfactant on nanosuspension stability and optical, dielectric, and rheological properties of zinc oxide nanoparticles dispersed alcohols mixture based nanofluids" @default.
- W4380883602 cites W2004367256 @default.
- W4380883602 cites W2016840906 @default.
- W4380883602 cites W2024561699 @default.
- W4380883602 cites W2025764317 @default.
- W4380883602 cites W2052545202 @default.
- W4380883602 cites W2070393354 @default.
- W4380883602 cites W2075635752 @default.
- W4380883602 cites W2126249704 @default.
- W4380883602 cites W2165937505 @default.
- W4380883602 cites W2551308186 @default.
- W4380883602 cites W2573580025 @default.
- W4380883602 cites W2587698047 @default.
- W4380883602 cites W2602194826 @default.
- W4380883602 cites W2782447504 @default.
- W4380883602 cites W2782595252 @default.
- W4380883602 cites W2804785709 @default.
- W4380883602 cites W2956665117 @default.
- W4380883602 cites W2965611928 @default.
- W4380883602 cites W2969657710 @default.
- W4380883602 cites W2985297882 @default.
- W4380883602 cites W2990455416 @default.
- W4380883602 cites W3007665250 @default.
- W4380883602 cites W3014969291 @default.
- W4380883602 cites W3045477179 @default.
- W4380883602 cites W3097426280 @default.
- W4380883602 cites W3109373221 @default.
- W4380883602 cites W3110530330 @default.
- W4380883602 cites W3132464928 @default.
- W4380883602 cites W3159238452 @default.
- W4380883602 cites W3175231724 @default.
- W4380883602 cites W3183867894 @default.
- W4380883602 cites W3185752004 @default.
- W4380883602 cites W4205416119 @default.
- W4380883602 cites W4206462165 @default.
- W4380883602 cites W4207075525 @default.
- W4380883602 cites W4211163419 @default.
- W4380883602 cites W4221092474 @default.
- W4380883602 cites W4225155470 @default.
- W4380883602 cites W4225281032 @default.
- W4380883602 cites W4229037954 @default.
- W4380883602 cites W4281630799 @default.
- W4380883602 cites W4288391216 @default.
- W4380883602 cites W4290785759 @default.
- W4380883602 cites W4308035129 @default.
- W4380883602 cites W4309775986 @default.
- W4380883602 cites W4318594323 @default.
- W4380883602 cites W4319007918 @default.
- W4380883602 cites W4323032451 @default.
- W4380883602 cites W4377227249 @default.
- W4380883602 cites W4379520429 @default.
- W4380883602 doi "https://doi.org/10.1016/j.molliq.2023.122350" @default.
- W4380883602 hasPublicationYear "2023" @default.
- W4380883602 type Work @default.
- W4380883602 citedByCount "0" @default.
- W4380883602 crossrefType "journal-article" @default.
- W4380883602 hasAuthorship W4380883602A5030537643 @default.
- W4380883602 hasAuthorship W4380883602A5049811504 @default.
- W4380883602 hasConcept C113196181 @default.
- W4380883602 hasConcept C127172972 @default.
- W4380883602 hasConcept C127413603 @default.
- W4380883602 hasConcept C133386390 @default.
- W4380883602 hasConcept C147789679 @default.
- W4380883602 hasConcept C155672457 @default.
- W4380883602 hasConcept C159985019 @default.
- W4380883602 hasConcept C171250308 @default.
- W4380883602 hasConcept C17525397 @default.
- W4380883602 hasConcept C178790620 @default.
- W4380883602 hasConcept C185592680 @default.
- W4380883602 hasConcept C192562407 @default.
- W4380883602 hasConcept C21946209 @default.
- W4380883602 hasConcept C2776278261 @default.
- W4380883602 hasConcept C2777516009 @default.
- W4380883602 hasConcept C42360764 @default.
- W4380883602 hasConcept C49040817 @default.
- W4380883602 hasConcept C52859227 @default.
- W4380883602 hasConcept C7040849 @default.
- W4380883602 hasConcept C86181022 @default.
- W4380883602 hasConceptScore W4380883602C113196181 @default.
- W4380883602 hasConceptScore W4380883602C127172972 @default.
- W4380883602 hasConceptScore W4380883602C127413603 @default.
- W4380883602 hasConceptScore W4380883602C133386390 @default.
- W4380883602 hasConceptScore W4380883602C147789679 @default.
- W4380883602 hasConceptScore W4380883602C155672457 @default.
- W4380883602 hasConceptScore W4380883602C159985019 @default.
- W4380883602 hasConceptScore W4380883602C171250308 @default.
- W4380883602 hasConceptScore W4380883602C17525397 @default.
- W4380883602 hasConceptScore W4380883602C178790620 @default.
- W4380883602 hasConceptScore W4380883602C185592680 @default.
- W4380883602 hasConceptScore W4380883602C192562407 @default.
- W4380883602 hasConceptScore W4380883602C21946209 @default.
- W4380883602 hasConceptScore W4380883602C2776278261 @default.