Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380883940> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4380883940 abstract "Abstract Background Sleep disturbances are both risk factors for and symptoms of dementia. Current methods for assessing sleep disturbances are largely based on either polysomnography (PSG) which is costly and inconvenient, or self‐ or care‐giver reports which are prone to measurement error. Low‐cost methods to monitor sleep disturbances longitudinally and at scale can be useful for assessing symptom development. Here, we develop deep learning models that use multimodal variables (accelerometers and temperature) recorded by the AX3 to accurately identify sleep and wake epochs and derive sleep parameters. Method Eighteen men and women (65‐80y) participated in a sleep laboratory‐based study in which multiple devices for sleep monitoring were evaluated. PSGs were recorded over a 10‐h period and scored according to established criteria per 30 sec epochs. Tri‐axial accelerometers and temperature signals were captured with an Axivity AX3, at 100Hz and 1Hz, respectively, throughout a 19‐h period, including 10‐h concurrent PSG recording and 9‐h of wakefulness. We developed and evaluated a supervised deep learning algorithm to detect sleep and wake epochs and determine sleep parameters from the multimodal AX3 raw data. We validated our results with gold standard PSG measurements and compared our algorithm to the Biobank accelerometer analysis toolbox. Single modality (accelerometer or temperature) and multimodality (both signals) approaches were evaluated using the 3‐fold cross‐validation. Result The proposed deep learning model outperformed baseline models such as the Biobank accelerometer analysis toolbox and conventional machine learning classifiers (Random Forest and Support Vector Machine) by up to 25%. Using multimodal data improved sleep and wake classification performance (up to 18% higher) compared with the single modality. In terms of the sleep parameters, our approach boosted the accuracy of estimations by 11% on average compared to the Biobank accelerometer analysis toolbox. Conclusion In older adults without dementia, combining multimodal data from AX3 with deep learning methods allows satisfactory quantification of sleep and wakefulness. This approach holds promise for monitoring sleep behaviour and deriving accurate sleep parameters objectively and longitudinally from a low‐cost wearable sensor. A limitation of our current study is that the participants were healthy older adults: future work will focus on people living with dementia." @default.
- W4380883940 created "2023-06-17" @default.
- W4380883940 creator A5008431949 @default.
- W4380883940 creator A5018068321 @default.
- W4380883940 creator A5030137494 @default.
- W4380883940 creator A5062271111 @default.
- W4380883940 creator A5069947751 @default.
- W4380883940 creator A5075158622 @default.
- W4380883940 creator A5080896827 @default.
- W4380883940 creator A5083243614 @default.
- W4380883940 date "2023-06-01" @default.
- W4380883940 modified "2023-09-27" @default.
- W4380883940 title "Objective assessment of sleep parameters using multimodal AX3 data in older participants" @default.
- W4380883940 doi "https://doi.org/10.1002/alz.062373" @default.
- W4380883940 hasPublicationYear "2023" @default.
- W4380883940 type Work @default.
- W4380883940 citedByCount "0" @default.
- W4380883940 crossrefType "journal-article" @default.
- W4380883940 hasAuthorship W4380883940A5008431949 @default.
- W4380883940 hasAuthorship W4380883940A5018068321 @default.
- W4380883940 hasAuthorship W4380883940A5030137494 @default.
- W4380883940 hasAuthorship W4380883940A5062271111 @default.
- W4380883940 hasAuthorship W4380883940A5069947751 @default.
- W4380883940 hasAuthorship W4380883940A5075158622 @default.
- W4380883940 hasAuthorship W4380883940A5080896827 @default.
- W4380883940 hasAuthorship W4380883940A5083243614 @default.
- W4380883940 hasBestOaLocation W43808839401 @default.
- W4380883940 hasConcept C111919701 @default.
- W4380883940 hasConcept C118552586 @default.
- W4380883940 hasConcept C119857082 @default.
- W4380883940 hasConcept C121446783 @default.
- W4380883940 hasConcept C126322002 @default.
- W4380883940 hasConcept C154945302 @default.
- W4380883940 hasConcept C169258074 @default.
- W4380883940 hasConcept C2775841894 @default.
- W4380883940 hasConcept C2778205975 @default.
- W4380883940 hasConcept C2778996325 @default.
- W4380883940 hasConcept C41008148 @default.
- W4380883940 hasConcept C522805319 @default.
- W4380883940 hasConcept C71924100 @default.
- W4380883940 hasConcept C89805583 @default.
- W4380883940 hasConceptScore W4380883940C111919701 @default.
- W4380883940 hasConceptScore W4380883940C118552586 @default.
- W4380883940 hasConceptScore W4380883940C119857082 @default.
- W4380883940 hasConceptScore W4380883940C121446783 @default.
- W4380883940 hasConceptScore W4380883940C126322002 @default.
- W4380883940 hasConceptScore W4380883940C154945302 @default.
- W4380883940 hasConceptScore W4380883940C169258074 @default.
- W4380883940 hasConceptScore W4380883940C2775841894 @default.
- W4380883940 hasConceptScore W4380883940C2778205975 @default.
- W4380883940 hasConceptScore W4380883940C2778996325 @default.
- W4380883940 hasConceptScore W4380883940C41008148 @default.
- W4380883940 hasConceptScore W4380883940C522805319 @default.
- W4380883940 hasConceptScore W4380883940C71924100 @default.
- W4380883940 hasConceptScore W4380883940C89805583 @default.
- W4380883940 hasIssue "S5" @default.
- W4380883940 hasLocation W43808839401 @default.
- W4380883940 hasOpenAccess W4380883940 @default.
- W4380883940 hasPrimaryLocation W43808839401 @default.
- W4380883940 hasRelatedWork W1906940141 @default.
- W4380883940 hasRelatedWork W2015364665 @default.
- W4380883940 hasRelatedWork W2335405677 @default.
- W4380883940 hasRelatedWork W2396951905 @default.
- W4380883940 hasRelatedWork W2757206626 @default.
- W4380883940 hasRelatedWork W2897348212 @default.
- W4380883940 hasRelatedWork W3098675969 @default.
- W4380883940 hasRelatedWork W3158301135 @default.
- W4380883940 hasRelatedWork W4205881069 @default.
- W4380883940 hasRelatedWork W4310713430 @default.
- W4380883940 hasVolume "19" @default.
- W4380883940 isParatext "false" @default.
- W4380883940 isRetracted "false" @default.
- W4380883940 workType "article" @default.