Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380884633> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4380884633 endingPage "113213" @default.
- W4380884633 startingPage "113213" @default.
- W4380884633 abstract "Obesity is one of the most concerning nutritional issues since it is a significant risk factor for chronic diseases, including cardiovascular disease and diabetes. Many dietary disorders require an anthropometry assessment and body fat percentage (BFP) information. Dual-energy X-ray absorptiometry (DXA) is the most precise and automated method for determining BFP; nevertheless, it is costly and difficult to locate in clinics. This paper proposes the utilization of digital image processing and machine learning techniques to estimate BFP, considering four 2D camera images and additional factors such as age, weight, height, and sex. Our proposal specifically adopts a sex-specific approach. Our experiments included pre-processing steps and several regressors. Moreover, we built a dataset composed of 912 samples, including male and female individuals. The sex-based approach to estimating the BFP achieved satisfactory results for both males and females. Thus, it can assist monitor patients as a mobile application, especially in areas where experts and technology, such as equipment, are scarce." @default.
- W4380884633 created "2023-06-17" @default.
- W4380884633 creator A5009939466 @default.
- W4380884633 creator A5011654947 @default.
- W4380884633 creator A5017649045 @default.
- W4380884633 creator A5040712742 @default.
- W4380884633 creator A5046359084 @default.
- W4380884633 creator A5050880380 @default.
- W4380884633 creator A5053302633 @default.
- W4380884633 creator A5065545744 @default.
- W4380884633 creator A5081952935 @default.
- W4380884633 creator A5083234811 @default.
- W4380884633 date "2023-09-01" @default.
- W4380884633 modified "2023-09-27" @default.
- W4380884633 title "Sex-based approach to estimate human body fat percentage from 2D camera images with deep learning and machine learning" @default.
- W4380884633 cites W178894351 @default.
- W4380884633 cites W1972438272 @default.
- W4380884633 cites W1988539193 @default.
- W4380884633 cites W2011334587 @default.
- W4380884633 cites W2049798783 @default.
- W4380884633 cites W2051577174 @default.
- W4380884633 cites W2097662925 @default.
- W4380884633 cites W2112160795 @default.
- W4380884633 cites W2136910460 @default.
- W4380884633 cites W2146023819 @default.
- W4380884633 cites W2214790450 @default.
- W4380884633 cites W2612603124 @default.
- W4380884633 cites W2625006908 @default.
- W4380884633 cites W2737328338 @default.
- W4380884633 cites W2800287564 @default.
- W4380884633 cites W2800698956 @default.
- W4380884633 cites W2902315714 @default.
- W4380884633 cites W2996242756 @default.
- W4380884633 cites W3012256779 @default.
- W4380884633 cites W3045066578 @default.
- W4380884633 cites W3157159046 @default.
- W4380884633 cites W4288725097 @default.
- W4380884633 cites W4307983833 @default.
- W4380884633 doi "https://doi.org/10.1016/j.measurement.2023.113213" @default.
- W4380884633 hasPublicationYear "2023" @default.
- W4380884633 type Work @default.
- W4380884633 citedByCount "0" @default.
- W4380884633 crossrefType "journal-article" @default.
- W4380884633 hasAuthorship W4380884633A5009939466 @default.
- W4380884633 hasAuthorship W4380884633A5011654947 @default.
- W4380884633 hasAuthorship W4380884633A5017649045 @default.
- W4380884633 hasAuthorship W4380884633A5040712742 @default.
- W4380884633 hasAuthorship W4380884633A5046359084 @default.
- W4380884633 hasAuthorship W4380884633A5050880380 @default.
- W4380884633 hasAuthorship W4380884633A5053302633 @default.
- W4380884633 hasAuthorship W4380884633A5065545744 @default.
- W4380884633 hasAuthorship W4380884633A5081952935 @default.
- W4380884633 hasAuthorship W4380884633A5083234811 @default.
- W4380884633 hasConcept C108583219 @default.
- W4380884633 hasConcept C119857082 @default.
- W4380884633 hasConcept C126322002 @default.
- W4380884633 hasConcept C142724271 @default.
- W4380884633 hasConcept C154945302 @default.
- W4380884633 hasConcept C2780005051 @default.
- W4380884633 hasConcept C31972630 @default.
- W4380884633 hasConcept C41008148 @default.
- W4380884633 hasConcept C511355011 @default.
- W4380884633 hasConcept C61427482 @default.
- W4380884633 hasConcept C71924100 @default.
- W4380884633 hasConceptScore W4380884633C108583219 @default.
- W4380884633 hasConceptScore W4380884633C119857082 @default.
- W4380884633 hasConceptScore W4380884633C126322002 @default.
- W4380884633 hasConceptScore W4380884633C142724271 @default.
- W4380884633 hasConceptScore W4380884633C154945302 @default.
- W4380884633 hasConceptScore W4380884633C2780005051 @default.
- W4380884633 hasConceptScore W4380884633C31972630 @default.
- W4380884633 hasConceptScore W4380884633C41008148 @default.
- W4380884633 hasConceptScore W4380884633C511355011 @default.
- W4380884633 hasConceptScore W4380884633C61427482 @default.
- W4380884633 hasConceptScore W4380884633C71924100 @default.
- W4380884633 hasLocation W43808846331 @default.
- W4380884633 hasOpenAccess W4380884633 @default.
- W4380884633 hasPrimaryLocation W43808846331 @default.
- W4380884633 hasRelatedWork W2795261237 @default.
- W4380884633 hasRelatedWork W3014300295 @default.
- W4380884633 hasRelatedWork W3164822677 @default.
- W4380884633 hasRelatedWork W4223943233 @default.
- W4380884633 hasRelatedWork W4225161397 @default.
- W4380884633 hasRelatedWork W4312200629 @default.
- W4380884633 hasRelatedWork W4360585206 @default.
- W4380884633 hasRelatedWork W4364306694 @default.
- W4380884633 hasRelatedWork W4380075502 @default.
- W4380884633 hasRelatedWork W4380086463 @default.
- W4380884633 hasVolume "219" @default.
- W4380884633 isParatext "false" @default.
- W4380884633 isRetracted "false" @default.
- W4380884633 workType "article" @default.