Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380884910> ?p ?o ?g. }
- W4380884910 endingPage "977" @default.
- W4380884910 startingPage "967" @default.
- W4380884910 abstract "•ASE recommends the detection of RV dysfunction using RV FAC, FWS, and TAPSE. •LVivoRV an artificial intelligence software, rapidly measures FAC, FWS, and TAPSE on the 4-chamber view. •Compared to CMR, AI-measured FAC, FWS, and TAPSE is very sensitive to exclude RV dysfunction. Background Right ventricular (RV) function is important in the evaluation of cardiac function, but its assessment using standard transthoracic echocardiography (TTE) remains challenging. Cardiac magnetic resonance imaging (CMR) is considered the gold standard. The American Society of Echocardiography recommends surrogate measures of RV function and RV ejection fraction (RVEF) by TTE, including fractional area change (FAC), free wall strain (FWS), and tricuspid annular planar systolic excursion (TAPSE), but they require technical expertise in acquisition and quantification. Methods The aim of this study was to evaluate the sensitivity, specificity, and positive and negative predictive values of FAC, FWS, and TAPSE derived using a rapid, novel artificial intelligence (AI) software (LVivoRV) from a single-plane transthoracic echocardiographic apical four-chamber, RV-focused view without ultrasound-enhancing agents for detecting abnormal RV function compared with CMR-derived RVEF. RV dysfunction was defined as RVEF < 50% and RVEF < 40% on CMR. Results TTE and CMR were performed within a median of 10 days (interquartile range, 2-32 days) of each other in 225 consecutive patients without interval procedural or pharmacologic intervention. The sensitivity and negative predictive value to detect CMR-defined RV dysfunction when all three AI-derived parameters (FAC, FWS, and TAPSE) were abnormal were 91% and 96%, while those of expert physician reads were 91% and 97%. Specificity and positive predictive value were lower (50% and 32%) compared with expert physician-read echocardiograms (82% and 56%). Conclusions AI-derived measurements of FAC, FWS, and TAPSE had excellent sensitivity and negative predictive value for ruling out significant RV dysfunction (CMR RVEF < 40%), comparable with that of expert physician readers, but lower specificity. Thus AI, using American Society of Echocardiography guidelines, may serve as a useful screening tool for rapid bedside assessment to exclude significant RV dysfunction. Right ventricular (RV) function is important in the evaluation of cardiac function, but its assessment using standard transthoracic echocardiography (TTE) remains challenging. Cardiac magnetic resonance imaging (CMR) is considered the gold standard. The American Society of Echocardiography recommends surrogate measures of RV function and RV ejection fraction (RVEF) by TTE, including fractional area change (FAC), free wall strain (FWS), and tricuspid annular planar systolic excursion (TAPSE), but they require technical expertise in acquisition and quantification. The aim of this study was to evaluate the sensitivity, specificity, and positive and negative predictive values of FAC, FWS, and TAPSE derived using a rapid, novel artificial intelligence (AI) software (LVivoRV) from a single-plane transthoracic echocardiographic apical four-chamber, RV-focused view without ultrasound-enhancing agents for detecting abnormal RV function compared with CMR-derived RVEF. RV dysfunction was defined as RVEF < 50% and RVEF < 40% on CMR. TTE and CMR were performed within a median of 10 days (interquartile range, 2-32 days) of each other in 225 consecutive patients without interval procedural or pharmacologic intervention. The sensitivity and negative predictive value to detect CMR-defined RV dysfunction when all three AI-derived parameters (FAC, FWS, and TAPSE) were abnormal were 91% and 96%, while those of expert physician reads were 91% and 97%. Specificity and positive predictive value were lower (50% and 32%) compared with expert physician-read echocardiograms (82% and 56%). AI-derived measurements of FAC, FWS, and TAPSE had excellent sensitivity and negative predictive value for ruling out significant RV dysfunction (CMR RVEF < 40%), comparable with that of expert physician readers, but lower specificity. Thus AI, using American Society of Echocardiography guidelines, may serve as a useful screening tool for rapid bedside assessment to exclude significant RV dysfunction." @default.
- W4380884910 created "2023-06-17" @default.
- W4380884910 creator A5008757621 @default.
- W4380884910 creator A5009396379 @default.
- W4380884910 creator A5027489874 @default.
- W4380884910 creator A5042780321 @default.
- W4380884910 creator A5043497921 @default.
- W4380884910 creator A5045816524 @default.
- W4380884910 creator A5046629853 @default.
- W4380884910 creator A5054362740 @default.
- W4380884910 creator A5055499834 @default.
- W4380884910 creator A5062869089 @default.
- W4380884910 creator A5063767504 @default.
- W4380884910 creator A5068471185 @default.
- W4380884910 creator A5068998296 @default.
- W4380884910 creator A5071613549 @default.
- W4380884910 creator A5083826629 @default.
- W4380884910 creator A5084325302 @default.
- W4380884910 date "2023-09-01" @default.
- W4380884910 modified "2023-09-27" @default.
- W4380884910 title "Validation of American Society of Echocardiography Guideline-Recommended Parameters of Right Ventricular Dysfunction Using Artificial Intelligence Compared With Cardiac Magnetic Resonance Imaging" @default.
- W4380884910 cites W1986679166 @default.
- W4380884910 cites W1987229393 @default.
- W4380884910 cites W1990188040 @default.
- W4380884910 cites W2003438163 @default.
- W4380884910 cites W2020018978 @default.
- W4380884910 cites W2040048991 @default.
- W4380884910 cites W2041437149 @default.
- W4380884910 cites W2058537058 @default.
- W4380884910 cites W2120203545 @default.
- W4380884910 cites W2124624517 @default.
- W4380884910 cites W2126953085 @default.
- W4380884910 cites W2163723162 @default.
- W4380884910 cites W2187630416 @default.
- W4380884910 cites W2287006745 @default.
- W4380884910 cites W2328176404 @default.
- W4380884910 cites W2547028072 @default.
- W4380884910 cites W2598480684 @default.
- W4380884910 cites W2764338100 @default.
- W4380884910 cites W2785158177 @default.
- W4380884910 cites W2911557811 @default.
- W4380884910 cites W2923631751 @default.
- W4380884910 cites W2948071063 @default.
- W4380884910 cites W2975978852 @default.
- W4380884910 cites W2990973273 @default.
- W4380884910 cites W3005027424 @default.
- W4380884910 cites W3007215286 @default.
- W4380884910 cites W3025648138 @default.
- W4380884910 cites W3090784328 @default.
- W4380884910 cites W3115338515 @default.
- W4380884910 cites W3126150727 @default.
- W4380884910 cites W3185757722 @default.
- W4380884910 cites W4210875476 @default.
- W4380884910 cites W4213157439 @default.
- W4380884910 doi "https://doi.org/10.1016/j.echo.2023.05.015" @default.
- W4380884910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37331608" @default.
- W4380884910 hasPublicationYear "2023" @default.
- W4380884910 type Work @default.
- W4380884910 citedByCount "0" @default.
- W4380884910 crossrefType "journal-article" @default.
- W4380884910 hasAuthorship W4380884910A5008757621 @default.
- W4380884910 hasAuthorship W4380884910A5009396379 @default.
- W4380884910 hasAuthorship W4380884910A5027489874 @default.
- W4380884910 hasAuthorship W4380884910A5042780321 @default.
- W4380884910 hasAuthorship W4380884910A5043497921 @default.
- W4380884910 hasAuthorship W4380884910A5045816524 @default.
- W4380884910 hasAuthorship W4380884910A5046629853 @default.
- W4380884910 hasAuthorship W4380884910A5054362740 @default.
- W4380884910 hasAuthorship W4380884910A5055499834 @default.
- W4380884910 hasAuthorship W4380884910A5062869089 @default.
- W4380884910 hasAuthorship W4380884910A5063767504 @default.
- W4380884910 hasAuthorship W4380884910A5068471185 @default.
- W4380884910 hasAuthorship W4380884910A5068998296 @default.
- W4380884910 hasAuthorship W4380884910A5071613549 @default.
- W4380884910 hasAuthorship W4380884910A5083826629 @default.
- W4380884910 hasAuthorship W4380884910A5084325302 @default.
- W4380884910 hasConcept C119060515 @default.
- W4380884910 hasConcept C126322002 @default.
- W4380884910 hasConcept C126838900 @default.
- W4380884910 hasConcept C143409427 @default.
- W4380884910 hasConcept C164705383 @default.
- W4380884910 hasConcept C2776008845 @default.
- W4380884910 hasConcept C2778198053 @default.
- W4380884910 hasConcept C2987145844 @default.
- W4380884910 hasConcept C40993552 @default.
- W4380884910 hasConcept C44249647 @default.
- W4380884910 hasConcept C71924100 @default.
- W4380884910 hasConcept C78085059 @default.
- W4380884910 hasConceptScore W4380884910C119060515 @default.
- W4380884910 hasConceptScore W4380884910C126322002 @default.
- W4380884910 hasConceptScore W4380884910C126838900 @default.
- W4380884910 hasConceptScore W4380884910C143409427 @default.
- W4380884910 hasConceptScore W4380884910C164705383 @default.
- W4380884910 hasConceptScore W4380884910C2776008845 @default.
- W4380884910 hasConceptScore W4380884910C2778198053 @default.
- W4380884910 hasConceptScore W4380884910C2987145844 @default.
- W4380884910 hasConceptScore W4380884910C40993552 @default.
- W4380884910 hasConceptScore W4380884910C44249647 @default.