Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380987341> ?p ?o ?g. }
- W4380987341 endingPage "1036" @default.
- W4380987341 startingPage "1028" @default.
- W4380987341 abstract "The search for chemical hit material is a lengthy and increasingly expensive drug discovery process. To improve it, ligand-based quantitative structure-activity relationship models have been broadly applied to optimize primary and secondary compound properties. Although these models can be deployed as early as the stage of molecule design, they have a limited applicability domain─if the structures of interest differ substantially from the chemical space on which the model was trained, a reliable prediction will not be possible. Image-informed ligand-based models partly solve this shortcoming by focusing on the phenotype of a cell caused by small molecules, rather than on their structure. While this enables chemical diversity expansion, it limits the application to compounds physically available and imaged. Here, we employ an active learning approach to capitalize on both of these methods' strengths and boost the model performance of a mitochondrial toxicity assay (Glu/Gal). Specifically, we used a phenotypic Cell Painting screen to build a chemistry-independent model and adopted the results as the main factor in selecting compounds for experimental testing. With the additional Glu/Gal annotation for selected compounds we were able to dramatically improve the chemistry-informed ligand-based model with respect to the increased recognition of compounds from a 10% broader chemical space." @default.
- W4380987341 created "2023-06-17" @default.
- W4380987341 creator A5003314826 @default.
- W4380987341 creator A5004552137 @default.
- W4380987341 creator A5006963619 @default.
- W4380987341 creator A5019296124 @default.
- W4380987341 creator A5024259930 @default.
- W4380987341 creator A5026129104 @default.
- W4380987341 creator A5026797322 @default.
- W4380987341 creator A5034724098 @default.
- W4380987341 creator A5042345785 @default.
- W4380987341 creator A5060676219 @default.
- W4380987341 creator A5061394488 @default.
- W4380987341 creator A5063459787 @default.
- W4380987341 creator A5067263565 @default.
- W4380987341 creator A5080731813 @default.
- W4380987341 creator A5082106270 @default.
- W4380987341 creator A5092188124 @default.
- W4380987341 date "2023-06-16" @default.
- W4380987341 modified "2023-10-18" @default.
- W4380987341 title "Leveraging Cell Painting Images to Expand the Applicability Domain and Actively Improve Deep Learning Quantitative Structure–Activity Relationship Models" @default.
- W4380987341 cites W1659023836 @default.
- W4380987341 cites W1975147762 @default.
- W4380987341 cites W1984994707 @default.
- W4380987341 cites W1990878163 @default.
- W4380987341 cites W1997224005 @default.
- W4380987341 cites W2000934753 @default.
- W4380987341 cites W2031598641 @default.
- W4380987341 cites W2034203319 @default.
- W4380987341 cites W2060531713 @default.
- W4380987341 cites W2086034778 @default.
- W4380987341 cites W2099064181 @default.
- W4380987341 cites W2101893734 @default.
- W4380987341 cites W2129968561 @default.
- W4380987341 cites W2131381069 @default.
- W4380987341 cites W2144963196 @default.
- W4380987341 cites W2146402650 @default.
- W4380987341 cites W2155806188 @default.
- W4380987341 cites W2162401151 @default.
- W4380987341 cites W2168988732 @default.
- W4380987341 cites W2189911347 @default.
- W4380987341 cites W2254686952 @default.
- W4380987341 cites W2509141893 @default.
- W4380987341 cites W2794301983 @default.
- W4380987341 cites W2806542061 @default.
- W4380987341 cites W2889326414 @default.
- W4380987341 cites W2913340405 @default.
- W4380987341 cites W2922305141 @default.
- W4380987341 cites W2943610654 @default.
- W4380987341 cites W2950238754 @default.
- W4380987341 cites W2974531432 @default.
- W4380987341 cites W3113917069 @default.
- W4380987341 cites W3156662976 @default.
- W4380987341 cites W3185456481 @default.
- W4380987341 cites W4221162707 @default.
- W4380987341 cites W4284671611 @default.
- W4380987341 cites W4291624975 @default.
- W4380987341 cites W4292738946 @default.
- W4380987341 cites W4315488007 @default.
- W4380987341 cites W4318756946 @default.
- W4380987341 cites W4360948819 @default.
- W4380987341 cites W4362721877 @default.
- W4380987341 cites W4379197245 @default.
- W4380987341 doi "https://doi.org/10.1021/acs.chemrestox.2c00404" @default.
- W4380987341 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37327474" @default.
- W4380987341 hasPublicationYear "2023" @default.
- W4380987341 type Work @default.
- W4380987341 citedByCount "2" @default.
- W4380987341 countsByYear W43809873412023 @default.
- W4380987341 crossrefType "journal-article" @default.
- W4380987341 hasAuthorship W4380987341A5003314826 @default.
- W4380987341 hasAuthorship W4380987341A5004552137 @default.
- W4380987341 hasAuthorship W4380987341A5006963619 @default.
- W4380987341 hasAuthorship W4380987341A5019296124 @default.
- W4380987341 hasAuthorship W4380987341A5024259930 @default.
- W4380987341 hasAuthorship W4380987341A5026129104 @default.
- W4380987341 hasAuthorship W4380987341A5026797322 @default.
- W4380987341 hasAuthorship W4380987341A5034724098 @default.
- W4380987341 hasAuthorship W4380987341A5042345785 @default.
- W4380987341 hasAuthorship W4380987341A5060676219 @default.
- W4380987341 hasAuthorship W4380987341A5061394488 @default.
- W4380987341 hasAuthorship W4380987341A5063459787 @default.
- W4380987341 hasAuthorship W4380987341A5067263565 @default.
- W4380987341 hasAuthorship W4380987341A5080731813 @default.
- W4380987341 hasAuthorship W4380987341A5082106270 @default.
- W4380987341 hasAuthorship W4380987341A5092188124 @default.
- W4380987341 hasBestOaLocation W43809873411 @default.
- W4380987341 hasConcept C107908354 @default.
- W4380987341 hasConcept C111919701 @default.
- W4380987341 hasConcept C116569031 @default.
- W4380987341 hasConcept C119857082 @default.
- W4380987341 hasConcept C127413603 @default.
- W4380987341 hasConcept C134306372 @default.
- W4380987341 hasConcept C154945302 @default.
- W4380987341 hasConcept C161624437 @default.
- W4380987341 hasConcept C164126121 @default.
- W4380987341 hasConcept C170493617 @default.
- W4380987341 hasConcept C183696295 @default.