Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380987951> ?p ?o ?g. }
- W4380987951 endingPage "2697" @default.
- W4380987951 startingPage "2697" @default.
- W4380987951 abstract "AI-based models have shown promising results in diagnosing eye diseases based on multi-sources of data collected from medical IOT systems. However, there are concerns regarding their generalization and robustness, as these methods are prone to overfitting specific datasets. The development of Explainable Artificial Intelligence (XAI) techniques has addressed the black-box problem of machine learning and deep learning models, which can enhance interpretability and trustworthiness and optimize their performance in the real world. Age-related macular degeneration (AMD) is currently the primary cause of vision loss among elderly individuals. In this study, XAI methods were applied to detect AMD using various ophthalmic imaging modalities collected from medical IOT systems, such as colorful fundus photography (CFP), optical coherence tomography (OCT), ultra-wide fundus (UWF) images, and fluorescein angiography fundus (FAF). An optimized deep learning (DL) model and novel AMD identification systems were proposed based on the insights extracted by XAI. The findings of this study demonstrate that XAI not only has the potential to improve the transparency, reliability, and trustworthiness of AI models for ophthalmic applications, but it also has significant advantages for enhancing the robustness performance of these models. XAI could play a crucial role in promoting intelligent ophthalmology and be one of the most important techniques for evaluating and enhancing ophthalmic AI systems." @default.
- W4380987951 created "2023-06-17" @default.
- W4380987951 creator A5022798483 @default.
- W4380987951 creator A5028673590 @default.
- W4380987951 creator A5038582529 @default.
- W4380987951 creator A5046523138 @default.
- W4380987951 creator A5058325076 @default.
- W4380987951 date "2023-06-16" @default.
- W4380987951 modified "2023-10-05" @default.
- W4380987951 title "An Explainable Artificial Intelligence-Based Robustness Optimization Approach for Age-Related Macular Degeneration Detection Based on Medical IOT Systems" @default.
- W4380987951 cites W2163565521 @default.
- W4380987951 cites W2762494246 @default.
- W4380987951 cites W2765793020 @default.
- W4380987951 cites W2767635412 @default.
- W4380987951 cites W2796809202 @default.
- W4380987951 cites W2802338305 @default.
- W4380987951 cites W2884120031 @default.
- W4380987951 cites W2884387603 @default.
- W4380987951 cites W2890139949 @default.
- W4380987951 cites W2891503716 @default.
- W4380987951 cites W2895144199 @default.
- W4380987951 cites W2917124146 @default.
- W4380987951 cites W2942760134 @default.
- W4380987951 cites W2952790449 @default.
- W4380987951 cites W2958089299 @default.
- W4380987951 cites W2962858109 @default.
- W4380987951 cites W2966297403 @default.
- W4380987951 cites W2996290406 @default.
- W4380987951 cites W3002195828 @default.
- W4380987951 cites W3006229125 @default.
- W4380987951 cites W3027122607 @default.
- W4380987951 cites W3035426851 @default.
- W4380987951 cites W3041133507 @default.
- W4380987951 cites W3083027974 @default.
- W4380987951 cites W3091449858 @default.
- W4380987951 cites W3110054227 @default.
- W4380987951 cites W3112251966 @default.
- W4380987951 cites W3121708854 @default.
- W4380987951 cites W3152706196 @default.
- W4380987951 cites W3153301075 @default.
- W4380987951 cites W3165556047 @default.
- W4380987951 cites W3176482836 @default.
- W4380987951 cites W3179841826 @default.
- W4380987951 cites W3197347140 @default.
- W4380987951 cites W3212386989 @default.
- W4380987951 cites W3213384164 @default.
- W4380987951 cites W3213698765 @default.
- W4380987951 cites W4206799332 @default.
- W4380987951 cites W4206988042 @default.
- W4380987951 cites W4220762983 @default.
- W4380987951 cites W4220905545 @default.
- W4380987951 cites W4288736338 @default.
- W4380987951 cites W4298879900 @default.
- W4380987951 cites W4361017517 @default.
- W4380987951 cites W4366962638 @default.
- W4380987951 cites W4367311891 @default.
- W4380987951 cites W4297152426 @default.
- W4380987951 doi "https://doi.org/10.3390/electronics12122697" @default.
- W4380987951 hasPublicationYear "2023" @default.
- W4380987951 type Work @default.
- W4380987951 citedByCount "1" @default.
- W4380987951 crossrefType "journal-article" @default.
- W4380987951 hasAuthorship W4380987951A5022798483 @default.
- W4380987951 hasAuthorship W4380987951A5028673590 @default.
- W4380987951 hasAuthorship W4380987951A5038582529 @default.
- W4380987951 hasAuthorship W4380987951A5046523138 @default.
- W4380987951 hasAuthorship W4380987951A5058325076 @default.
- W4380987951 hasBestOaLocation W43809879511 @default.
- W4380987951 hasConcept C104317684 @default.
- W4380987951 hasConcept C108583219 @default.
- W4380987951 hasConcept C118487528 @default.
- W4380987951 hasConcept C119857082 @default.
- W4380987951 hasConcept C154945302 @default.
- W4380987951 hasConcept C185592680 @default.
- W4380987951 hasConcept C22019652 @default.
- W4380987951 hasConcept C2776391266 @default.
- W4380987951 hasConcept C2776403814 @default.
- W4380987951 hasConcept C2778818243 @default.
- W4380987951 hasConcept C2781067378 @default.
- W4380987951 hasConcept C31601959 @default.
- W4380987951 hasConcept C41008148 @default.
- W4380987951 hasConcept C50644808 @default.
- W4380987951 hasConcept C55493867 @default.
- W4380987951 hasConcept C63479239 @default.
- W4380987951 hasConcept C71924100 @default.
- W4380987951 hasConceptScore W4380987951C104317684 @default.
- W4380987951 hasConceptScore W4380987951C108583219 @default.
- W4380987951 hasConceptScore W4380987951C118487528 @default.
- W4380987951 hasConceptScore W4380987951C119857082 @default.
- W4380987951 hasConceptScore W4380987951C154945302 @default.
- W4380987951 hasConceptScore W4380987951C185592680 @default.
- W4380987951 hasConceptScore W4380987951C22019652 @default.
- W4380987951 hasConceptScore W4380987951C2776391266 @default.
- W4380987951 hasConceptScore W4380987951C2776403814 @default.
- W4380987951 hasConceptScore W4380987951C2778818243 @default.
- W4380987951 hasConceptScore W4380987951C2781067378 @default.
- W4380987951 hasConceptScore W4380987951C31601959 @default.
- W4380987951 hasConceptScore W4380987951C41008148 @default.