Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380990801> ?p ?o ?g. }
- W4380990801 endingPage "3198" @default.
- W4380990801 startingPage "3198" @default.
- W4380990801 abstract "(1) Background: The Fuhrman grading (FG) system is widely used in the management of clear cell renal cell carcinoma (ccRCC). However, it is affected by observer variability and irreproducibility in clinical practice. We aimed to use a deep learning multi-class model called SSL-CLAM to assist in diagnosing the FG status of ccRCC patients using digitized whole slide images (WSIs). (2) Methods: We recruited 504 eligible ccRCC patients from The Cancer Genome Atlas (TCGA) cohort and obtained 708 hematoxylin and eosin-stained WSIs for the development and internal validation of the SSL-CLAM model. Additionally, we obtained 445 WSIs from 188 ccRCC eligible patients in the Clinical Proteomic Tumor Analysis Consortium (CPTAC) cohort as an independent external validation set. A human-machine fusion approach was used to validate the added value of the SSL-CLAM model for pathologists. (3) Results: The SSL-CLAM model successfully diagnosed the five FG statuses (Grade-0, 1, 2, 3, and 4) of ccRCC, and achieved AUCs of 0.917 and 0.887 on the internal and external validation sets, respectively, outperforming a junior pathologist. For the normal/tumor classification (Grade-0, Grade-1/2/3/4) task, the SSL-CLAM model yielded AUCs close to 1 on both the internal and external validation sets. The SSL-CLAM model achieved a better performance for the two-tiered FG (Grade-0, Grade-1/2, and Grade-3/4) task, with AUCs of 0.936 and 0.915 on the internal and external validation sets, respectively. The human-machine diagnostic performance was superior to that of the SSL-CLAM model, showing promising prospects. In addition, the high-attention regions of the SSL-CLAM model showed that with an increasing FG status, the cell nuclei in the tumor region become larger, with irregular contours and increased cellular pleomorphism. (4) Conclusions: Our findings support the feasibility of using deep learning and human-machine fusion methods for FG classification on WSIs from ccRCC patients, which may assist pathologists in making diagnostic decisions." @default.
- W4380990801 created "2023-06-17" @default.
- W4380990801 creator A5003861245 @default.
- W4380990801 creator A5007651007 @default.
- W4380990801 creator A5018072854 @default.
- W4380990801 creator A5030584766 @default.
- W4380990801 creator A5041245981 @default.
- W4380990801 creator A5073216396 @default.
- W4380990801 creator A5074480744 @default.
- W4380990801 creator A5074754590 @default.
- W4380990801 creator A5074885577 @default.
- W4380990801 creator A5081525840 @default.
- W4380990801 date "2023-06-15" @default.
- W4380990801 modified "2023-10-18" @default.
- W4380990801 title "A Weakly Supervised Deep Learning Model and Human–Machine Fusion for Accurate Grading of Renal Cell Carcinoma from Histopathology Slides" @default.
- W4380990801 cites W1479698106 @default.
- W4380990801 cites W1606627350 @default.
- W4380990801 cites W1855839624 @default.
- W4380990801 cites W1967685977 @default.
- W4380990801 cites W1978242942 @default.
- W4380990801 cites W1991408439 @default.
- W4380990801 cites W1996507739 @default.
- W4380990801 cites W2030640501 @default.
- W4380990801 cites W2039545078 @default.
- W4380990801 cites W2171117253 @default.
- W4380990801 cites W2470965540 @default.
- W4380990801 cites W2800765809 @default.
- W4380990801 cites W2892325025 @default.
- W4380990801 cites W2904789262 @default.
- W4380990801 cites W2955557725 @default.
- W4380990801 cites W2956228567 @default.
- W4380990801 cites W2978882452 @default.
- W4380990801 cites W3015357052 @default.
- W4380990801 cites W3084161163 @default.
- W4380990801 cites W3104135675 @default.
- W4380990801 cites W3128646645 @default.
- W4380990801 cites W3135547872 @default.
- W4380990801 cites W3139326336 @default.
- W4380990801 cites W3141984075 @default.
- W4380990801 cites W3160261825 @default.
- W4380990801 cites W3164581645 @default.
- W4380990801 cites W3166025287 @default.
- W4380990801 cites W4210983935 @default.
- W4380990801 cites W4225136345 @default.
- W4380990801 cites W4229049871 @default.
- W4380990801 cites W4291021272 @default.
- W4380990801 cites W4293153457 @default.
- W4380990801 cites W4298395281 @default.
- W4380990801 cites W4310172146 @default.
- W4380990801 cites W4362696912 @default.
- W4380990801 doi "https://doi.org/10.3390/cancers15123198" @default.
- W4380990801 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37370808" @default.
- W4380990801 hasPublicationYear "2023" @default.
- W4380990801 type Work @default.
- W4380990801 citedByCount "1" @default.
- W4380990801 crossrefType "journal-article" @default.
- W4380990801 hasAuthorship W4380990801A5003861245 @default.
- W4380990801 hasAuthorship W4380990801A5007651007 @default.
- W4380990801 hasAuthorship W4380990801A5018072854 @default.
- W4380990801 hasAuthorship W4380990801A5030584766 @default.
- W4380990801 hasAuthorship W4380990801A5041245981 @default.
- W4380990801 hasAuthorship W4380990801A5073216396 @default.
- W4380990801 hasAuthorship W4380990801A5074480744 @default.
- W4380990801 hasAuthorship W4380990801A5074754590 @default.
- W4380990801 hasAuthorship W4380990801A5074885577 @default.
- W4380990801 hasAuthorship W4380990801A5081525840 @default.
- W4380990801 hasBestOaLocation W43809908011 @default.
- W4380990801 hasConcept C119857082 @default.
- W4380990801 hasConcept C126838900 @default.
- W4380990801 hasConcept C142724271 @default.
- W4380990801 hasConcept C154945302 @default.
- W4380990801 hasConcept C18903297 @default.
- W4380990801 hasConcept C2777286243 @default.
- W4380990801 hasConcept C2777472916 @default.
- W4380990801 hasConcept C2781278892 @default.
- W4380990801 hasConcept C41008148 @default.
- W4380990801 hasConcept C544855455 @default.
- W4380990801 hasConcept C71924100 @default.
- W4380990801 hasConcept C72563966 @default.
- W4380990801 hasConcept C86803240 @default.
- W4380990801 hasConceptScore W4380990801C119857082 @default.
- W4380990801 hasConceptScore W4380990801C126838900 @default.
- W4380990801 hasConceptScore W4380990801C142724271 @default.
- W4380990801 hasConceptScore W4380990801C154945302 @default.
- W4380990801 hasConceptScore W4380990801C18903297 @default.
- W4380990801 hasConceptScore W4380990801C2777286243 @default.
- W4380990801 hasConceptScore W4380990801C2777472916 @default.
- W4380990801 hasConceptScore W4380990801C2781278892 @default.
- W4380990801 hasConceptScore W4380990801C41008148 @default.
- W4380990801 hasConceptScore W4380990801C544855455 @default.
- W4380990801 hasConceptScore W4380990801C71924100 @default.
- W4380990801 hasConceptScore W4380990801C72563966 @default.
- W4380990801 hasConceptScore W4380990801C86803240 @default.
- W4380990801 hasIssue "12" @default.
- W4380990801 hasLocation W43809908011 @default.
- W4380990801 hasLocation W43809908012 @default.
- W4380990801 hasLocation W43809908013 @default.
- W4380990801 hasOpenAccess W4380990801 @default.