Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380991275> ?p ?o ?g. }
- W4380991275 endingPage "1386" @default.
- W4380991275 startingPage "1373" @default.
- W4380991275 abstract "Time in range (TIR) as assessed by continuous glucose monitoring (CGM) measures an individual's glucose fluctuations within set limits in a time period and is increasingly used together with HbA1c in patients with diabetes. HbA1c indicates the average glucose concentration but provides no information on glucose fluctuation. However, before CGM becomes available for patients with type 2 diabetes (T2D) worldwide, especially in developing nations, fasting plasma glucose (FPG) and postprandial plasma glucose (PPG) are still the common biomarkers used for monitoring diabetes conditions. We investigated the importance of FPG and PPG to glucose fluctuation in patients with T2D. We used machine learning to provide a new estimate of TIR based on the HbA1c, together with FPG and PPG.This study included 399 patients with T2D. (1) Univariate and (2) multivariate linear regression models and (3) random forest regression models were developed to predict the TIR. Subgroup analysis was performed in the newly diagnosed T2D population to explore and optimize the prediction model for patients with different disease history.Regression analysis suggests that FPG was strongly linked to minimum glucose, while PPG was strongly correlated with maximum glucose. After FPG and PPG were incorporated into the multivariate linear regression model, the prediction performance of TIR was improved compared with the univariate correlation between HbA1c and TIR, and the correlation coefficient (95% CI) increased from 0.62 (0.59, 0.65) to 0.73 (0.72, 0.75) (p < 0.001). The random forest model significantly outperformed the linear model (p < 0.001) in predicting TIR through FPG, PPG and HbA1c, with a stronger correlation coefficient 0.79 (0.79, 0.80).The results offered a comprehensive understanding of glucose fluctuations through FPG and PPG compared to HbA1c alone. Our novel TIR prediction model based on random forest regression with FPG, PPG, and HbA1c provides a better prediction performance than the univariate model with solely HbA1c. The results indicate a nonlinear relationship between TIR and glycaemic parameters. Our results suggest that machine learning may have the potential to be used in developing better models for understanding patients' disease status and providing necessary interventions for glycaemic control." @default.
- W4380991275 created "2023-06-17" @default.
- W4380991275 creator A5016410321 @default.
- W4380991275 creator A5023868586 @default.
- W4380991275 creator A5029979857 @default.
- W4380991275 creator A5058684135 @default.
- W4380991275 creator A5062777746 @default.
- W4380991275 creator A5070820936 @default.
- W4380991275 creator A5073541760 @default.
- W4380991275 creator A5084047711 @default.
- W4380991275 date "2023-06-16" @default.
- W4380991275 modified "2023-10-09" @default.
- W4380991275 title "Time in Range Estimation in Patients with Type 2 Diabetes is Improved by Incorporating Fasting and Postprandial Glucose Levels" @default.
- W4380991275 cites W1872244446 @default.
- W4380991275 cites W2027398852 @default.
- W4380991275 cites W2033453118 @default.
- W4380991275 cites W2034007800 @default.
- W4380991275 cites W2045921953 @default.
- W4380991275 cites W2065708365 @default.
- W4380991275 cites W2123946565 @default.
- W4380991275 cites W2153552938 @default.
- W4380991275 cites W2167776476 @default.
- W4380991275 cites W2299876101 @default.
- W4380991275 cites W2611839822 @default.
- W4380991275 cites W2612292012 @default.
- W4380991275 cites W2617689652 @default.
- W4380991275 cites W2620519423 @default.
- W4380991275 cites W2739310415 @default.
- W4380991275 cites W2890939018 @default.
- W4380991275 cites W2891930016 @default.
- W4380991275 cites W2906596531 @default.
- W4380991275 cites W2910274134 @default.
- W4380991275 cites W2943456521 @default.
- W4380991275 cites W2984838865 @default.
- W4380991275 cites W2986446268 @default.
- W4380991275 cites W3017384252 @default.
- W4380991275 cites W3034686205 @default.
- W4380991275 cites W3038891123 @default.
- W4380991275 cites W3044099509 @default.
- W4380991275 cites W3093332602 @default.
- W4380991275 cites W3094028309 @default.
- W4380991275 cites W3110712704 @default.
- W4380991275 cites W3121399117 @default.
- W4380991275 cites W3125955871 @default.
- W4380991275 cites W3133728855 @default.
- W4380991275 cites W3138553431 @default.
- W4380991275 cites W3164761466 @default.
- W4380991275 cites W3165388738 @default.
- W4380991275 cites W3200178266 @default.
- W4380991275 cites W4210352360 @default.
- W4380991275 cites W4235701932 @default.
- W4380991275 cites W4281714801 @default.
- W4380991275 cites W4285726033 @default.
- W4380991275 cites W4296078739 @default.
- W4380991275 cites W4297021616 @default.
- W4380991275 cites W4311178484 @default.
- W4380991275 doi "https://doi.org/10.1007/s13300-023-01432-2" @default.
- W4380991275 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37328714" @default.
- W4380991275 hasPublicationYear "2023" @default.
- W4380991275 type Work @default.
- W4380991275 citedByCount "1" @default.
- W4380991275 countsByYear W43809912752023 @default.
- W4380991275 crossrefType "journal-article" @default.
- W4380991275 hasAuthorship W4380991275A5016410321 @default.
- W4380991275 hasAuthorship W4380991275A5023868586 @default.
- W4380991275 hasAuthorship W4380991275A5029979857 @default.
- W4380991275 hasAuthorship W4380991275A5058684135 @default.
- W4380991275 hasAuthorship W4380991275A5062777746 @default.
- W4380991275 hasAuthorship W4380991275A5070820936 @default.
- W4380991275 hasAuthorship W4380991275A5073541760 @default.
- W4380991275 hasAuthorship W4380991275A5084047711 @default.
- W4380991275 hasBestOaLocation W43809912751 @default.
- W4380991275 hasConcept C105795698 @default.
- W4380991275 hasConcept C126322002 @default.
- W4380991275 hasConcept C134018914 @default.
- W4380991275 hasConcept C144301174 @default.
- W4380991275 hasConcept C152877465 @default.
- W4380991275 hasConcept C161584116 @default.
- W4380991275 hasConcept C199163554 @default.
- W4380991275 hasConcept C2777180221 @default.
- W4380991275 hasConcept C2778199505 @default.
- W4380991275 hasConcept C2908647359 @default.
- W4380991275 hasConcept C3020574416 @default.
- W4380991275 hasConcept C33923547 @default.
- W4380991275 hasConcept C38180746 @default.
- W4380991275 hasConcept C48921125 @default.
- W4380991275 hasConcept C555293320 @default.
- W4380991275 hasConcept C64946054 @default.
- W4380991275 hasConcept C71924100 @default.
- W4380991275 hasConcept C83546350 @default.
- W4380991275 hasConcept C99454951 @default.
- W4380991275 hasConceptScore W4380991275C105795698 @default.
- W4380991275 hasConceptScore W4380991275C126322002 @default.
- W4380991275 hasConceptScore W4380991275C134018914 @default.
- W4380991275 hasConceptScore W4380991275C144301174 @default.
- W4380991275 hasConceptScore W4380991275C152877465 @default.
- W4380991275 hasConceptScore W4380991275C161584116 @default.
- W4380991275 hasConceptScore W4380991275C199163554 @default.