Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380992024> ?p ?o ?g. }
- W4380992024 endingPage "e00225" @default.
- W4380992024 startingPage "e00225" @default.
- W4380992024 abstract "The goal of this study is to develop a general strategy for bacterial engineering using an integrated synthetic biology and machine learning (ML) approach. This strategy was developed in the context of increasing L-threonine production in Escherichia coli ATCC 21277. A set of 16 genes was initially selected based on metabolic pathway relevance to threonine biosynthesis and used for combinatorial cloning to construct a set of 385 strains to generate training data (i.e., a range of L-threonine titers linked to each of the specific gene combinations). Hybrid (regression/classification) deep learning (DL) models were developed and used to predict additional gene combinations in subsequent rounds of combinatorial cloning for increased L-threonine production based on the training data. As a result, E. coli strains built after just three rounds of iterative combinatorial cloning and model prediction generated higher L-threonine titers (from 2.7 g/L to 8.4 g/L) than those of patented L-threonine strains being used as controls (4-5 g/L). Interesting combinations of genes in L-threonine production included deletions of the tdh, metL, dapA, and dhaM genes as well as overexpression of the pntAB, ppc, and aspC genes. Mechanistic analysis of the metabolic system constraints for the best performing constructs offers ways to improve the models by adjusting weights for specific gene combinations. Graph theory analysis of pairwise gene modifications and corresponding levels of L-threonine production also suggests additional rules that can be incorporated into future ML models." @default.
- W4380992024 created "2023-06-17" @default.
- W4380992024 creator A5026370684 @default.
- W4380992024 creator A5028689402 @default.
- W4380992024 creator A5031438996 @default.
- W4380992024 creator A5044610317 @default.
- W4380992024 creator A5046675967 @default.
- W4380992024 creator A5049505423 @default.
- W4380992024 creator A5049894538 @default.
- W4380992024 creator A5053682943 @default.
- W4380992024 creator A5061933709 @default.
- W4380992024 creator A5069825511 @default.
- W4380992024 creator A5087181804 @default.
- W4380992024 creator A5090143180 @default.
- W4380992024 date "2023-06-01" @default.
- W4380992024 modified "2023-09-26" @default.
- W4380992024 title "Engineering of increased L-Threonine production in bacteria by combinatorial cloning and machine learning" @default.
- W4380992024 cites W1693303585 @default.
- W4380992024 cites W1979287129 @default.
- W4380992024 cites W1987038145 @default.
- W4380992024 cites W2000652017 @default.
- W4380992024 cites W2023290064 @default.
- W4380992024 cites W2024009600 @default.
- W4380992024 cites W2042585930 @default.
- W4380992024 cites W2044547101 @default.
- W4380992024 cites W2045770879 @default.
- W4380992024 cites W2064876011 @default.
- W4380992024 cites W2077820538 @default.
- W4380992024 cites W2079248746 @default.
- W4380992024 cites W2093057648 @default.
- W4380992024 cites W2101849873 @default.
- W4380992024 cites W2116137883 @default.
- W4380992024 cites W2118006029 @default.
- W4380992024 cites W2124737787 @default.
- W4380992024 cites W2132550206 @default.
- W4380992024 cites W2138530870 @default.
- W4380992024 cites W2144836423 @default.
- W4380992024 cites W2154767435 @default.
- W4380992024 cites W2170400465 @default.
- W4380992024 cites W2323723611 @default.
- W4380992024 cites W2336950589 @default.
- W4380992024 cites W2398037440 @default.
- W4380992024 cites W2555362571 @default.
- W4380992024 cites W2569808825 @default.
- W4380992024 cites W2576913502 @default.
- W4380992024 cites W2612272261 @default.
- W4380992024 cites W2739904912 @default.
- W4380992024 cites W2766109133 @default.
- W4380992024 cites W2802280146 @default.
- W4380992024 cites W2803393744 @default.
- W4380992024 cites W2893524502 @default.
- W4380992024 cites W2902290256 @default.
- W4380992024 cites W2902826360 @default.
- W4380992024 cites W2910030584 @default.
- W4380992024 cites W2949670700 @default.
- W4380992024 cites W2962485519 @default.
- W4380992024 cites W2970534831 @default.
- W4380992024 cites W2970537687 @default.
- W4380992024 cites W2971767597 @default.
- W4380992024 cites W2975661862 @default.
- W4380992024 cites W2988948129 @default.
- W4380992024 cites W2993166334 @default.
- W4380992024 cites W3011804248 @default.
- W4380992024 cites W3045045199 @default.
- W4380992024 cites W3088063380 @default.
- W4380992024 cites W3091901779 @default.
- W4380992024 cites W3110784682 @default.
- W4380992024 cites W3135879632 @default.
- W4380992024 cites W3180768485 @default.
- W4380992024 cites W4224920317 @default.
- W4380992024 cites W4225272203 @default.
- W4380992024 cites W4229003350 @default.
- W4380992024 cites W4237462208 @default.
- W4380992024 doi "https://doi.org/10.1016/j.mec.2023.e00225" @default.
- W4380992024 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37435441" @default.
- W4380992024 hasPublicationYear "2023" @default.
- W4380992024 type Work @default.
- W4380992024 citedByCount "0" @default.
- W4380992024 crossrefType "journal-article" @default.
- W4380992024 hasAuthorship W4380992024A5026370684 @default.
- W4380992024 hasAuthorship W4380992024A5028689402 @default.
- W4380992024 hasAuthorship W4380992024A5031438996 @default.
- W4380992024 hasAuthorship W4380992024A5044610317 @default.
- W4380992024 hasAuthorship W4380992024A5046675967 @default.
- W4380992024 hasAuthorship W4380992024A5049505423 @default.
- W4380992024 hasAuthorship W4380992024A5049894538 @default.
- W4380992024 hasAuthorship W4380992024A5053682943 @default.
- W4380992024 hasAuthorship W4380992024A5061933709 @default.
- W4380992024 hasAuthorship W4380992024A5069825511 @default.
- W4380992024 hasAuthorship W4380992024A5087181804 @default.
- W4380992024 hasAuthorship W4380992024A5090143180 @default.
- W4380992024 hasBestOaLocation W43809920241 @default.
- W4380992024 hasConcept C104317684 @default.
- W4380992024 hasConcept C11960822 @default.
- W4380992024 hasConcept C121050878 @default.
- W4380992024 hasConcept C151730666 @default.
- W4380992024 hasConcept C154945302 @default.
- W4380992024 hasConcept C184898388 @default.