Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380992203> ?p ?o ?g. }
- W4380992203 endingPage "19970" @default.
- W4380992203 startingPage "19950" @default.
- W4380992203 abstract "<abstract> <p>This study presents a new and attractive analytical approach to treat systems with fractional multi-pantograph equations. We introduce the solution as a rapidly-converging series using the Laplace residual power series technique. This method controls the range of convergence and can be easily programmed to find many terms of the series coefficients by computer software. To show the efficiency and strength of the proposed method, we compare the results obtained in this study with those of the Homotopy analysis method and the residual power series technique. Furthermore, two exciting applications of fractional non-homogeneous pantograph systems are discussed in detail and solved numerically. We also present graphical simulations and analyses of the obtained results. Finally, we conclude that the obtained approximate solutions are very close to the exact solutions with a slight difference.</p> </abstract>" @default.
- W4380992203 created "2023-06-17" @default.
- W4380992203 creator A5025732055 @default.
- W4380992203 creator A5050224380 @default.
- W4380992203 creator A5077149299 @default.
- W4380992203 creator A5091226249 @default.
- W4380992203 date "2023-01-01" @default.
- W4380992203 modified "2023-10-02" @default.
- W4380992203 title "Effective transform-expansions algorithm for solving non-linear fractional multi-pantograph system" @default.
- W4380992203 cites W1975219289 @default.
- W4380992203 cites W2002029661 @default.
- W4380992203 cites W2017595816 @default.
- W4380992203 cites W2018588983 @default.
- W4380992203 cites W2019469368 @default.
- W4380992203 cites W2032647616 @default.
- W4380992203 cites W2039255063 @default.
- W4380992203 cites W2045250771 @default.
- W4380992203 cites W2052728710 @default.
- W4380992203 cites W2064305119 @default.
- W4380992203 cites W2085628012 @default.
- W4380992203 cites W2087707879 @default.
- W4380992203 cites W2089904505 @default.
- W4380992203 cites W2211491790 @default.
- W4380992203 cites W2304687139 @default.
- W4380992203 cites W2767749538 @default.
- W4380992203 cites W2886257756 @default.
- W4380992203 cites W2901432230 @default.
- W4380992203 cites W2946770385 @default.
- W4380992203 cites W2962697549 @default.
- W4380992203 cites W2980689816 @default.
- W4380992203 cites W2982384361 @default.
- W4380992203 cites W2998707382 @default.
- W4380992203 cites W3001935612 @default.
- W4380992203 cites W3010771518 @default.
- W4380992203 cites W3011238522 @default.
- W4380992203 cites W3022149264 @default.
- W4380992203 cites W3029070471 @default.
- W4380992203 cites W3034548093 @default.
- W4380992203 cites W3101492188 @default.
- W4380992203 cites W3129949328 @default.
- W4380992203 cites W3137285274 @default.
- W4380992203 cites W3186546279 @default.
- W4380992203 cites W3217193433 @default.
- W4380992203 cites W4212834435 @default.
- W4380992203 cites W4220789523 @default.
- W4380992203 cites W4223962039 @default.
- W4380992203 cites W4229031777 @default.
- W4380992203 cites W4283033702 @default.
- W4380992203 cites W4289338967 @default.
- W4380992203 cites W4291825037 @default.
- W4380992203 cites W4294326319 @default.
- W4380992203 cites W4297193084 @default.
- W4380992203 cites W4307703638 @default.
- W4380992203 cites W4311060132 @default.
- W4380992203 cites W4317623163 @default.
- W4380992203 cites W4318993306 @default.
- W4380992203 cites W4319964780 @default.
- W4380992203 cites W4323304843 @default.
- W4380992203 cites W4367555931 @default.
- W4380992203 doi "https://doi.org/10.3934/math.20231017" @default.
- W4380992203 hasPublicationYear "2023" @default.
- W4380992203 type Work @default.
- W4380992203 citedByCount "0" @default.
- W4380992203 crossrefType "journal-article" @default.
- W4380992203 hasAuthorship W4380992203A5025732055 @default.
- W4380992203 hasAuthorship W4380992203A5050224380 @default.
- W4380992203 hasAuthorship W4380992203A5077149299 @default.
- W4380992203 hasAuthorship W4380992203A5091226249 @default.
- W4380992203 hasBestOaLocation W43809922031 @default.
- W4380992203 hasConcept C11413529 @default.
- W4380992203 hasConcept C114614502 @default.
- W4380992203 hasConcept C127413603 @default.
- W4380992203 hasConcept C134306372 @default.
- W4380992203 hasConcept C143724316 @default.
- W4380992203 hasConcept C146978453 @default.
- W4380992203 hasConcept C151730666 @default.
- W4380992203 hasConcept C154249771 @default.
- W4380992203 hasConcept C155512373 @default.
- W4380992203 hasConcept C162324750 @default.
- W4380992203 hasConcept C204323151 @default.
- W4380992203 hasConcept C20756127 @default.
- W4380992203 hasConcept C2777303404 @default.
- W4380992203 hasConcept C28826006 @default.
- W4380992203 hasConcept C33923547 @default.
- W4380992203 hasConcept C41008148 @default.
- W4380992203 hasConcept C50522688 @default.
- W4380992203 hasConcept C66882249 @default.
- W4380992203 hasConcept C73905626 @default.
- W4380992203 hasConcept C78519656 @default.
- W4380992203 hasConcept C86803240 @default.
- W4380992203 hasConcept C97937538 @default.
- W4380992203 hasConceptScore W4380992203C11413529 @default.
- W4380992203 hasConceptScore W4380992203C114614502 @default.
- W4380992203 hasConceptScore W4380992203C127413603 @default.
- W4380992203 hasConceptScore W4380992203C134306372 @default.
- W4380992203 hasConceptScore W4380992203C143724316 @default.
- W4380992203 hasConceptScore W4380992203C146978453 @default.
- W4380992203 hasConceptScore W4380992203C151730666 @default.