Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380992241> ?p ?o ?g. }
- W4380992241 endingPage "e1011163" @default.
- W4380992241 startingPage "e1011163" @default.
- W4380992241 abstract "Background Microbiome research is providing important new insights into the metabolic interactions of complex microbial ecosystems involved in fields as diverse as the pathogenesis of human diseases, agriculture and climate change. Poor correlations typically observed between RNA and protein expression datasets make it hard to accurately infer microbial protein synthesis from metagenomic data. Additionally, mass spectrometry-based metaproteomic analyses typically rely on focused search sequence databases based on prior knowledge for protein identification that may not represent all the proteins present in a set of samples. Metagenomic 16S rRNA sequencing only targets the bacterial component, while whole genome sequencing is at best an indirect measure of expressed proteomes. Here we describe a novel approach, MetaNovo , that combines existing open-source software tools to perform scalable de novo sequence tag matching with a novel algorithm for probabilistic optimization of the entire UniProt knowledgebase to create tailored sequence databases for target-decoy searches directly at the proteome level, enabling metaproteomic analyses without prior expectation of sample composition or metagenomic data generation and compatible with standard downstream analysis pipelines. Results We compared MetaNovo to published results from the MetaPro-IQ pipeline on 8 human mucosal-luminal interface samples, with comparable numbers of peptide and protein identifications, many shared peptide sequences and a similar bacterial taxonomic distribution compared to that found using a matched metagenome sequence database—but simultaneously identified many more non-bacterial peptides than the previous approaches . MetaNovo was also benchmarked on samples of known microbial composition against matched metagenomic and whole genomic sequence database workflows, yielding many more MS/MS identifications for the expected taxa, with improved taxonomic representation, while also highlighting previously described genome sequencing quality concerns for one of the organisms, and identifying an experimental sample contaminant without prior expectation. Conclusions By estimating taxonomic and peptide level information directly on microbiome samples from tandem mass spectrometry data, MetaNovo enables the simultaneous identification of peptides from all domains of life in metaproteome samples, bypassing the need for curated sequence databases to search. We show that the MetaNovo approach to mass spectrometry metaproteomics is more accurate than current gold standard approaches of tailored or matched genomic sequence database searches, can identify sample contaminants without prior expectation and yields insights into previously unidentified metaproteomic signals, building on the potential for complex mass spectrometry metaproteomic data to speak for itself." @default.
- W4380992241 created "2023-06-17" @default.
- W4380992241 creator A5013356841 @default.
- W4380992241 creator A5056441437 @default.
- W4380992241 creator A5062939937 @default.
- W4380992241 creator A5067303195 @default.
- W4380992241 creator A5081241850 @default.
- W4380992241 creator A5081432438 @default.
- W4380992241 creator A5084728684 @default.
- W4380992241 creator A5090452087 @default.
- W4380992241 date "2023-06-16" @default.
- W4380992241 modified "2023-09-25" @default.
- W4380992241 title "MetaNovo: An open-source pipeline for probabilistic peptide discovery in complex metaproteomic datasets" @default.
- W4380992241 cites W1553112665 @default.
- W4380992241 cites W1966557933 @default.
- W4380992241 cites W1975224781 @default.
- W4380992241 cites W2016916625 @default.
- W4380992241 cites W2023224527 @default.
- W4380992241 cites W2027249101 @default.
- W4380992241 cites W2045985536 @default.
- W4380992241 cites W2075036506 @default.
- W4380992241 cites W2097124003 @default.
- W4380992241 cites W2111147163 @default.
- W4380992241 cites W2139397135 @default.
- W4380992241 cites W2139561888 @default.
- W4380992241 cites W2139578623 @default.
- W4380992241 cites W2163085584 @default.
- W4380992241 cites W2166437654 @default.
- W4380992241 cites W2324909991 @default.
- W4380992241 cites W2340761255 @default.
- W4380992241 cites W2381894708 @default.
- W4380992241 cites W2461711360 @default.
- W4380992241 cites W2526956161 @default.
- W4380992241 cites W2560671204 @default.
- W4380992241 cites W2592902329 @default.
- W4380992241 cites W2603081759 @default.
- W4380992241 cites W2728679964 @default.
- W4380992241 cites W2899760200 @default.
- W4380992241 cites W2956118338 @default.
- W4380992241 cites W3009089617 @default.
- W4380992241 cites W3110164307 @default.
- W4380992241 cites W4293741040 @default.
- W4380992241 cites W4306385524 @default.
- W4380992241 doi "https://doi.org/10.1371/journal.pcbi.1011163" @default.
- W4380992241 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37327214" @default.
- W4380992241 hasPublicationYear "2023" @default.
- W4380992241 type Work @default.
- W4380992241 citedByCount "0" @default.
- W4380992241 crossrefType "journal-article" @default.
- W4380992241 hasAuthorship W4380992241A5013356841 @default.
- W4380992241 hasAuthorship W4380992241A5056441437 @default.
- W4380992241 hasAuthorship W4380992241A5062939937 @default.
- W4380992241 hasAuthorship W4380992241A5067303195 @default.
- W4380992241 hasAuthorship W4380992241A5081241850 @default.
- W4380992241 hasAuthorship W4380992241A5081432438 @default.
- W4380992241 hasAuthorship W4380992241A5084728684 @default.
- W4380992241 hasAuthorship W4380992241A5090452087 @default.
- W4380992241 hasBestOaLocation W43809922411 @default.
- W4380992241 hasConcept C10010492 @default.
- W4380992241 hasConcept C104317684 @default.
- W4380992241 hasConcept C104397665 @default.
- W4380992241 hasConcept C141231307 @default.
- W4380992241 hasConcept C15151743 @default.
- W4380992241 hasConcept C151810110 @default.
- W4380992241 hasConcept C167625842 @default.
- W4380992241 hasConcept C190944805 @default.
- W4380992241 hasConcept C199465337 @default.
- W4380992241 hasConcept C202264299 @default.
- W4380992241 hasConcept C2775905019 @default.
- W4380992241 hasConcept C41008148 @default.
- W4380992241 hasConcept C41584329 @default.
- W4380992241 hasConcept C46111723 @default.
- W4380992241 hasConcept C51679486 @default.
- W4380992241 hasConcept C54355233 @default.
- W4380992241 hasConcept C60644358 @default.
- W4380992241 hasConcept C70721500 @default.
- W4380992241 hasConcept C86803240 @default.
- W4380992241 hasConceptScore W4380992241C10010492 @default.
- W4380992241 hasConceptScore W4380992241C104317684 @default.
- W4380992241 hasConceptScore W4380992241C104397665 @default.
- W4380992241 hasConceptScore W4380992241C141231307 @default.
- W4380992241 hasConceptScore W4380992241C15151743 @default.
- W4380992241 hasConceptScore W4380992241C151810110 @default.
- W4380992241 hasConceptScore W4380992241C167625842 @default.
- W4380992241 hasConceptScore W4380992241C190944805 @default.
- W4380992241 hasConceptScore W4380992241C199465337 @default.
- W4380992241 hasConceptScore W4380992241C202264299 @default.
- W4380992241 hasConceptScore W4380992241C2775905019 @default.
- W4380992241 hasConceptScore W4380992241C41008148 @default.
- W4380992241 hasConceptScore W4380992241C41584329 @default.
- W4380992241 hasConceptScore W4380992241C46111723 @default.
- W4380992241 hasConceptScore W4380992241C51679486 @default.
- W4380992241 hasConceptScore W4380992241C54355233 @default.
- W4380992241 hasConceptScore W4380992241C60644358 @default.
- W4380992241 hasConceptScore W4380992241C70721500 @default.
- W4380992241 hasConceptScore W4380992241C86803240 @default.
- W4380992241 hasFunder F4320320671 @default.
- W4380992241 hasFunder F4320320672 @default.