Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380992341> ?p ?o ?g. }
- W4380992341 endingPage "5650" @default.
- W4380992341 startingPage "5650" @default.
- W4380992341 abstract "In the billions of faces that are shaped by thousands of different cultures and ethnicities, one thing remains universal: the way emotions are expressed. To take the next step in human–machine interactions, a machine (e.g., a humanoid robot) must be able to clarify facial emotions. Allowing systems to recognize micro-expressions affords the machine a deeper dive into a person’s true feelings, which will take human emotion into account while making optimal decisions. For instance, these machines will be able to detect dangerous situations, alert caregivers to challenges, and provide appropriate responses. Micro-expressions are involuntary and transient facial expressions capable of revealing genuine emotions. We propose a new hybrid neural network (NN) model capable of micro-expression recognition in real-time applications. Several NN models are first compared in this study. Then, a hybrid NN model is created by combining a convolutional neural network (CNN), a recurrent neural network (RNN, e.g., long short-term memory (LSTM)), and a vision transformer. The CNN can extract spatial features (within a neighborhood of an image), whereas the LSTM can summarize temporal features. In addition, a transformer with an attention mechanism can capture sparse spatial relations residing in an image or between frames in a video clip. The inputs of the model are short facial videos, while the outputs are the micro-expressions recognized from the videos. The NN models are trained and tested with publicly available facial micro-expression datasets to recognize different micro-expressions (e.g., happiness, fear, anger, surprise, disgust, sadness). Score fusion and improvement metrics are also presented in our experiments. The results of our proposed models are compared with that of literature-reported methods tested on the same datasets. The proposed hybrid model performs the best, where score fusion can dramatically increase recognition performance." @default.
- W4380992341 created "2023-06-17" @default.
- W4380992341 creator A5023894377 @default.
- W4380992341 creator A5051649145 @default.
- W4380992341 date "2023-06-16" @default.
- W4380992341 modified "2023-09-29" @default.
- W4380992341 title "Facial Micro-Expression Recognition Enhanced by Score Fusion and a Hybrid Model from Convolutional LSTM and Vision Transformer" @default.
- W4380992341 cites W1854318472 @default.
- W4380992341 cites W2003238582 @default.
- W4380992341 cites W2006426145 @default.
- W4380992341 cites W2007661522 @default.
- W4380992341 cites W2034473161 @default.
- W4380992341 cites W2044106642 @default.
- W4380992341 cites W2047192624 @default.
- W4380992341 cites W2059588448 @default.
- W4380992341 cites W2139212933 @default.
- W4380992341 cites W2149731110 @default.
- W4380992341 cites W2160767978 @default.
- W4380992341 cites W2170735791 @default.
- W4380992341 cites W2194775991 @default.
- W4380992341 cites W2418739498 @default.
- W4380992341 cites W2426188534 @default.
- W4380992341 cites W2526853616 @default.
- W4380992341 cites W2531409750 @default.
- W4380992341 cites W2538953432 @default.
- W4380992341 cites W2571743746 @default.
- W4380992341 cites W2787894218 @default.
- W4380992341 cites W2793792192 @default.
- W4380992341 cites W2795156864 @default.
- W4380992341 cites W2808064875 @default.
- W4380992341 cites W3137274787 @default.
- W4380992341 cites W3159211957 @default.
- W4380992341 cites W36756441 @default.
- W4380992341 cites W4225934279 @default.
- W4380992341 cites W4241516134 @default.
- W4380992341 doi "https://doi.org/10.3390/s23125650" @default.
- W4380992341 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37420815" @default.
- W4380992341 hasPublicationYear "2023" @default.
- W4380992341 type Work @default.
- W4380992341 citedByCount "0" @default.
- W4380992341 crossrefType "journal-article" @default.
- W4380992341 hasAuthorship W4380992341A5023894377 @default.
- W4380992341 hasAuthorship W4380992341A5051649145 @default.
- W4380992341 hasBestOaLocation W43809923411 @default.
- W4380992341 hasConcept C118552586 @default.
- W4380992341 hasConcept C119857082 @default.
- W4380992341 hasConcept C147168706 @default.
- W4380992341 hasConcept C153180895 @default.
- W4380992341 hasConcept C154945302 @default.
- W4380992341 hasConcept C15744967 @default.
- W4380992341 hasConcept C195704467 @default.
- W4380992341 hasConcept C2777375102 @default.
- W4380992341 hasConcept C2779302386 @default.
- W4380992341 hasConcept C2779812673 @default.
- W4380992341 hasConcept C2780343955 @default.
- W4380992341 hasConcept C28490314 @default.
- W4380992341 hasConcept C31972630 @default.
- W4380992341 hasConcept C41008148 @default.
- W4380992341 hasConcept C50644808 @default.
- W4380992341 hasConcept C60692881 @default.
- W4380992341 hasConcept C77805123 @default.
- W4380992341 hasConcept C81363708 @default.
- W4380992341 hasConcept C90509273 @default.
- W4380992341 hasConceptScore W4380992341C118552586 @default.
- W4380992341 hasConceptScore W4380992341C119857082 @default.
- W4380992341 hasConceptScore W4380992341C147168706 @default.
- W4380992341 hasConceptScore W4380992341C153180895 @default.
- W4380992341 hasConceptScore W4380992341C154945302 @default.
- W4380992341 hasConceptScore W4380992341C15744967 @default.
- W4380992341 hasConceptScore W4380992341C195704467 @default.
- W4380992341 hasConceptScore W4380992341C2777375102 @default.
- W4380992341 hasConceptScore W4380992341C2779302386 @default.
- W4380992341 hasConceptScore W4380992341C2779812673 @default.
- W4380992341 hasConceptScore W4380992341C2780343955 @default.
- W4380992341 hasConceptScore W4380992341C28490314 @default.
- W4380992341 hasConceptScore W4380992341C31972630 @default.
- W4380992341 hasConceptScore W4380992341C41008148 @default.
- W4380992341 hasConceptScore W4380992341C50644808 @default.
- W4380992341 hasConceptScore W4380992341C60692881 @default.
- W4380992341 hasConceptScore W4380992341C77805123 @default.
- W4380992341 hasConceptScore W4380992341C81363708 @default.
- W4380992341 hasConceptScore W4380992341C90509273 @default.
- W4380992341 hasIssue "12" @default.
- W4380992341 hasLocation W43809923411 @default.
- W4380992341 hasLocation W43809923412 @default.
- W4380992341 hasLocation W43809923413 @default.
- W4380992341 hasOpenAccess W4380992341 @default.
- W4380992341 hasPrimaryLocation W43809923411 @default.
- W4380992341 hasRelatedWork W2018797527 @default.
- W4380992341 hasRelatedWork W2384466053 @default.
- W4380992341 hasRelatedWork W3170131698 @default.
- W4380992341 hasRelatedWork W3201980627 @default.
- W4380992341 hasRelatedWork W3205975697 @default.
- W4380992341 hasRelatedWork W4226271208 @default.
- W4380992341 hasRelatedWork W4311736839 @default.
- W4380992341 hasRelatedWork W4313563018 @default.
- W4380992341 hasRelatedWork W4366959055 @default.
- W4380992341 hasRelatedWork W4378716236 @default.