Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380992951> ?p ?o ?g. }
- W4380992951 endingPage "9652" @default.
- W4380992951 startingPage "9652" @default.
- W4380992951 abstract "The construction of high-speed rail lines in China has drastically improved the freight capacity of conventional railways. However, due to recent national energy policy adjustments, rail freight volumes, consisting mostly of coal, ore, and other minerals, have declined. As a result, the corresponding changes in the supply and demand of goods and transportation have led to a gradual transformation of the railway freight market from a seller’s market to a buyer’s market. It is important to carry out a systematic analysis and a precise forecast of the demand for rail freight transport. However, traditional time series forecasting models often lack precision during drastic fluctuations in demand, while deep learning-based forecasting models may lack interpretability. This study combines grey relational analysis (GRA) and deep neural networks (DNN) to offer a more interpretable approach to predicting rail freight demand. GRA is used to obtain explanatory variables associated with railway freight demand, which improves the intelligibility of the DNN prediction. However, the high-dimension predictor variable can make training on DNN challenging. Inspired by deep autoencoders (DAE), we add a layer of an encoder to the GRA-DNN model to compress and aggregate the high-dimension input. Case studies conducted on Chinese railway freight from 2000 to 2018 show that the proven GRA-DAE-NN model is precise and easy to interpret. Comparative experiments with conventional prediction models ARIMA, SVR, FC-LSTM, DNN, FNN, and GRNN further validate the performance of the GRA-DAE-NN model. The prediction accuracy of the GRA-DAE-NN model is 97.79%, higher than that of other models. Among the main explanatory variables, coal, oil, grain production, railway locomotives, and vehicles have a significant impact on the railway freight demand trend. The ablation experiment verified that GRA has a significant effect on the selection of explanatory variables and on improving the accuracy of predictions. The method proposed in this study not only accurately predicts railway freight demand but also helps railway transportation companies to better understand the key factors influencing demand changes." @default.
- W4380992951 created "2023-06-17" @default.
- W4380992951 creator A5004431856 @default.
- W4380992951 creator A5020285133 @default.
- W4380992951 creator A5049692788 @default.
- W4380992951 creator A5074210589 @default.
- W4380992951 creator A5076944498 @default.
- W4380992951 date "2023-06-16" @default.
- W4380992951 modified "2023-09-28" @default.
- W4380992951 title "Railway Freight Demand Forecasting Based on Multiple Factors: Grey Relational Analysis and Deep Autoencoder Neural Networks" @default.
- W4380992951 cites W2016270500 @default.
- W4380992951 cites W2603605794 @default.
- W4380992951 cites W2804202111 @default.
- W4380992951 cites W2896532220 @default.
- W4380992951 cites W2919115771 @default.
- W4380992951 cites W2922365569 @default.
- W4380992951 cites W2949677344 @default.
- W4380992951 cites W2981359633 @default.
- W4380992951 cites W3005537099 @default.
- W4380992951 cites W3023447266 @default.
- W4380992951 cites W3046296398 @default.
- W4380992951 cites W3048204913 @default.
- W4380992951 cites W3049161665 @default.
- W4380992951 cites W3084394145 @default.
- W4380992951 cites W3090067178 @default.
- W4380992951 cites W3102753660 @default.
- W4380992951 cites W3110358699 @default.
- W4380992951 cites W3111905586 @default.
- W4380992951 cites W3114921721 @default.
- W4380992951 cites W3142540411 @default.
- W4380992951 cites W3186192960 @default.
- W4380992951 cites W3201465610 @default.
- W4380992951 cites W3216797006 @default.
- W4380992951 cites W4200000569 @default.
- W4380992951 cites W4206280828 @default.
- W4380992951 cites W4281619991 @default.
- W4380992951 cites W4281696066 @default.
- W4380992951 cites W4281955235 @default.
- W4380992951 cites W4285742646 @default.
- W4380992951 cites W4301372229 @default.
- W4380992951 cites W4303650150 @default.
- W4380992951 cites W4308156613 @default.
- W4380992951 cites W4312091489 @default.
- W4380992951 doi "https://doi.org/10.3390/su15129652" @default.
- W4380992951 hasPublicationYear "2023" @default.
- W4380992951 type Work @default.
- W4380992951 citedByCount "0" @default.
- W4380992951 crossrefType "journal-article" @default.
- W4380992951 hasAuthorship W4380992951A5004431856 @default.
- W4380992951 hasAuthorship W4380992951A5020285133 @default.
- W4380992951 hasAuthorship W4380992951A5049692788 @default.
- W4380992951 hasAuthorship W4380992951A5074210589 @default.
- W4380992951 hasAuthorship W4380992951A5076944498 @default.
- W4380992951 hasBestOaLocation W43809929511 @default.
- W4380992951 hasConcept C101738243 @default.
- W4380992951 hasConcept C108583219 @default.
- W4380992951 hasConcept C119857082 @default.
- W4380992951 hasConcept C120330832 @default.
- W4380992951 hasConcept C127413603 @default.
- W4380992951 hasConcept C144237770 @default.
- W4380992951 hasConcept C151406439 @default.
- W4380992951 hasConcept C154945302 @default.
- W4380992951 hasConcept C162324750 @default.
- W4380992951 hasConcept C175444787 @default.
- W4380992951 hasConcept C193809577 @default.
- W4380992951 hasConcept C202444582 @default.
- W4380992951 hasConcept C24338571 @default.
- W4380992951 hasConcept C2781067378 @default.
- W4380992951 hasConcept C33676613 @default.
- W4380992951 hasConcept C33923547 @default.
- W4380992951 hasConcept C41008148 @default.
- W4380992951 hasConcept C42475967 @default.
- W4380992951 hasConcept C50644808 @default.
- W4380992951 hasConcept C64734493 @default.
- W4380992951 hasConceptScore W4380992951C101738243 @default.
- W4380992951 hasConceptScore W4380992951C108583219 @default.
- W4380992951 hasConceptScore W4380992951C119857082 @default.
- W4380992951 hasConceptScore W4380992951C120330832 @default.
- W4380992951 hasConceptScore W4380992951C127413603 @default.
- W4380992951 hasConceptScore W4380992951C144237770 @default.
- W4380992951 hasConceptScore W4380992951C151406439 @default.
- W4380992951 hasConceptScore W4380992951C154945302 @default.
- W4380992951 hasConceptScore W4380992951C162324750 @default.
- W4380992951 hasConceptScore W4380992951C175444787 @default.
- W4380992951 hasConceptScore W4380992951C193809577 @default.
- W4380992951 hasConceptScore W4380992951C202444582 @default.
- W4380992951 hasConceptScore W4380992951C24338571 @default.
- W4380992951 hasConceptScore W4380992951C2781067378 @default.
- W4380992951 hasConceptScore W4380992951C33676613 @default.
- W4380992951 hasConceptScore W4380992951C33923547 @default.
- W4380992951 hasConceptScore W4380992951C41008148 @default.
- W4380992951 hasConceptScore W4380992951C42475967 @default.
- W4380992951 hasConceptScore W4380992951C50644808 @default.
- W4380992951 hasConceptScore W4380992951C64734493 @default.
- W4380992951 hasFunder F4320321001 @default.
- W4380992951 hasIssue "12" @default.
- W4380992951 hasLocation W43809929511 @default.
- W4380992951 hasOpenAccess W4380992951 @default.