Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380993348> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4380993348 abstract "Federated learning (FL) as distributed machine learning has gained popularity as privacy-aware Machine Learning (ML) systems have emerged as a technique that prevents privacy leakage by building a global model and by conducting individualized training of decentralized edge clients on their own private data. The existing works, however, employ privacy mechanisms such as Secure Multiparty Computing (SMC), Differential Privacy (DP), etc. Which are immensely susceptible to interference, massive computational overhead, low accuracy, etc. With the increasingly broad deployment of FL systems, it is challenging to ensure fairness and maintain active client participation in FL systems. Very few works ensure reasonably satisfactory performances for the numerous diverse clients and fail to prevent potential bias against particular demographics in FL systems. The current efforts fail to strike a compromise between privacy, fairness, and model performance in FL systems and are vulnerable to a number of additional problems. In this paper, we provide a comprehensive survey stating the basic concepts of FL, the existing privacy challenges, techniques, and relevant works concerning privacy in FL. We also provide an extensive overview of the increasing fairness challenges, existing fairness notions, and the limited works that attempt both privacy and fairness in FL. By comprehensively describing the existing FL systems, we present the potential future directions pertaining to the challenges of privacy-preserving and fairness-aware FL systems." @default.
- W4380993348 created "2023-06-17" @default.
- W4380993348 creator A5027350296 @default.
- W4380993348 creator A5029751254 @default.
- W4380993348 creator A5036440250 @default.
- W4380993348 creator A5089779015 @default.
- W4380993348 date "2023-06-14" @default.
- W4380993348 modified "2023-09-23" @default.
- W4380993348 title "Fairness and Privacy-Preserving in Federated Learning: A Survey" @default.
- W4380993348 doi "https://doi.org/10.48550/arxiv.2306.08402" @default.
- W4380993348 hasPublicationYear "2023" @default.
- W4380993348 type Work @default.
- W4380993348 citedByCount "0" @default.
- W4380993348 crossrefType "posted-content" @default.
- W4380993348 hasAuthorship W4380993348A5027350296 @default.
- W4380993348 hasAuthorship W4380993348A5029751254 @default.
- W4380993348 hasAuthorship W4380993348A5036440250 @default.
- W4380993348 hasAuthorship W4380993348A5089779015 @default.
- W4380993348 hasBestOaLocation W43809933481 @default.
- W4380993348 hasConcept C105339364 @default.
- W4380993348 hasConcept C108827166 @default.
- W4380993348 hasConcept C111919701 @default.
- W4380993348 hasConcept C123201435 @default.
- W4380993348 hasConcept C124101348 @default.
- W4380993348 hasConcept C140547941 @default.
- W4380993348 hasConcept C144024400 @default.
- W4380993348 hasConcept C154945302 @default.
- W4380993348 hasConcept C15744967 @default.
- W4380993348 hasConcept C23130292 @default.
- W4380993348 hasConcept C2779960059 @default.
- W4380993348 hasConcept C2780586970 @default.
- W4380993348 hasConcept C36289849 @default.
- W4380993348 hasConcept C37736160 @default.
- W4380993348 hasConcept C38652104 @default.
- W4380993348 hasConcept C41008148 @default.
- W4380993348 hasConcept C46355384 @default.
- W4380993348 hasConcept C77805123 @default.
- W4380993348 hasConceptScore W4380993348C105339364 @default.
- W4380993348 hasConceptScore W4380993348C108827166 @default.
- W4380993348 hasConceptScore W4380993348C111919701 @default.
- W4380993348 hasConceptScore W4380993348C123201435 @default.
- W4380993348 hasConceptScore W4380993348C124101348 @default.
- W4380993348 hasConceptScore W4380993348C140547941 @default.
- W4380993348 hasConceptScore W4380993348C144024400 @default.
- W4380993348 hasConceptScore W4380993348C154945302 @default.
- W4380993348 hasConceptScore W4380993348C15744967 @default.
- W4380993348 hasConceptScore W4380993348C23130292 @default.
- W4380993348 hasConceptScore W4380993348C2779960059 @default.
- W4380993348 hasConceptScore W4380993348C2780586970 @default.
- W4380993348 hasConceptScore W4380993348C36289849 @default.
- W4380993348 hasConceptScore W4380993348C37736160 @default.
- W4380993348 hasConceptScore W4380993348C38652104 @default.
- W4380993348 hasConceptScore W4380993348C41008148 @default.
- W4380993348 hasConceptScore W4380993348C46355384 @default.
- W4380993348 hasConceptScore W4380993348C77805123 @default.
- W4380993348 hasLocation W43809933481 @default.
- W4380993348 hasLocation W43809933482 @default.
- W4380993348 hasOpenAccess W4380993348 @default.
- W4380993348 hasPrimaryLocation W43809933481 @default.
- W4380993348 hasRelatedWork W1423348282 @default.
- W4380993348 hasRelatedWork W2125567354 @default.
- W4380993348 hasRelatedWork W2885673189 @default.
- W4380993348 hasRelatedWork W3021042056 @default.
- W4380993348 hasRelatedWork W3028090072 @default.
- W4380993348 hasRelatedWork W3059450896 @default.
- W4380993348 hasRelatedWork W3126182537 @default.
- W4380993348 hasRelatedWork W3193386261 @default.
- W4380993348 hasRelatedWork W4300705348 @default.
- W4380993348 hasRelatedWork W4302066429 @default.
- W4380993348 isParatext "false" @default.
- W4380993348 isRetracted "false" @default.
- W4380993348 workType "article" @default.