Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380993801> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4380993801 abstract "This paper presents a solution to the cross-domain adaptation problem for 2D surgical image segmentation, explicitly considering the privacy protection of distributed datasets belonging to different centers. Deep learning architectures in medical image analysis necessitate extensive training data for better generalization. However, obtaining sufficient diagnostic and surgical data is still challenging, mainly due to the inherent cost of data curation and the need of experts for data annotation. Moreover, increased privacy and legal compliance concerns can make data sharing across clinical sites or regions difficult. Another ubiquitous challenge the medical datasets face is inevitable domain shifts among the collected data at the different centers. To this end, we propose a Client-server deep federated architecture for cross-domain adaptation. A server hosts a set of immutable parameters common to both the source and target domains. The clients consist of the respective domain-specific parameters and make requests to the server while learning their parameters and inferencing. We evaluate our framework in two benchmark datasets, demonstrating applicability in computer-assisted interventions for endoscopic polyp segmentation and diagnostic skin lesion detection and analysis. Our extensive quantitative and qualitative experiments demonstrate the superiority of the proposed method compared to competitive baseline and state-of-the-art methods. Codes are available at: https://github.com/thetna/distributed-da" @default.
- W4380993801 created "2023-06-17" @default.
- W4380993801 creator A5016310706 @default.
- W4380993801 creator A5035187427 @default.
- W4380993801 creator A5045605838 @default.
- W4380993801 creator A5063234434 @default.
- W4380993801 creator A5077630267 @default.
- W4380993801 creator A5080765299 @default.
- W4380993801 date "2023-06-14" @default.
- W4380993801 modified "2023-09-26" @default.
- W4380993801 title "A Client-server Deep Federated Learning for Cross-domain Surgical Image Segmentation" @default.
- W4380993801 doi "https://doi.org/10.48550/arxiv.2306.08720" @default.
- W4380993801 hasPublicationYear "2023" @default.
- W4380993801 type Work @default.
- W4380993801 citedByCount "0" @default.
- W4380993801 crossrefType "posted-content" @default.
- W4380993801 hasAuthorship W4380993801A5016310706 @default.
- W4380993801 hasAuthorship W4380993801A5035187427 @default.
- W4380993801 hasAuthorship W4380993801A5045605838 @default.
- W4380993801 hasAuthorship W4380993801A5063234434 @default.
- W4380993801 hasAuthorship W4380993801A5077630267 @default.
- W4380993801 hasAuthorship W4380993801A5080765299 @default.
- W4380993801 hasBestOaLocation W43809938011 @default.
- W4380993801 hasConcept C108583219 @default.
- W4380993801 hasConcept C115961682 @default.
- W4380993801 hasConcept C119857082 @default.
- W4380993801 hasConcept C120665830 @default.
- W4380993801 hasConcept C121332964 @default.
- W4380993801 hasConcept C124101348 @default.
- W4380993801 hasConcept C13280743 @default.
- W4380993801 hasConcept C134306372 @default.
- W4380993801 hasConcept C139807058 @default.
- W4380993801 hasConcept C154945302 @default.
- W4380993801 hasConcept C177148314 @default.
- W4380993801 hasConcept C177264268 @default.
- W4380993801 hasConcept C185798385 @default.
- W4380993801 hasConcept C199360897 @default.
- W4380993801 hasConcept C205649164 @default.
- W4380993801 hasConcept C2776321320 @default.
- W4380993801 hasConcept C33923547 @default.
- W4380993801 hasConcept C36503486 @default.
- W4380993801 hasConcept C41008148 @default.
- W4380993801 hasConcept C89600930 @default.
- W4380993801 hasConceptScore W4380993801C108583219 @default.
- W4380993801 hasConceptScore W4380993801C115961682 @default.
- W4380993801 hasConceptScore W4380993801C119857082 @default.
- W4380993801 hasConceptScore W4380993801C120665830 @default.
- W4380993801 hasConceptScore W4380993801C121332964 @default.
- W4380993801 hasConceptScore W4380993801C124101348 @default.
- W4380993801 hasConceptScore W4380993801C13280743 @default.
- W4380993801 hasConceptScore W4380993801C134306372 @default.
- W4380993801 hasConceptScore W4380993801C139807058 @default.
- W4380993801 hasConceptScore W4380993801C154945302 @default.
- W4380993801 hasConceptScore W4380993801C177148314 @default.
- W4380993801 hasConceptScore W4380993801C177264268 @default.
- W4380993801 hasConceptScore W4380993801C185798385 @default.
- W4380993801 hasConceptScore W4380993801C199360897 @default.
- W4380993801 hasConceptScore W4380993801C205649164 @default.
- W4380993801 hasConceptScore W4380993801C2776321320 @default.
- W4380993801 hasConceptScore W4380993801C33923547 @default.
- W4380993801 hasConceptScore W4380993801C36503486 @default.
- W4380993801 hasConceptScore W4380993801C41008148 @default.
- W4380993801 hasConceptScore W4380993801C89600930 @default.
- W4380993801 hasLocation W43809938011 @default.
- W4380993801 hasOpenAccess W4380993801 @default.
- W4380993801 hasPrimaryLocation W43809938011 @default.
- W4380993801 hasRelatedWork W2790662084 @default.
- W4380993801 hasRelatedWork W2948658236 @default.
- W4380993801 hasRelatedWork W2963683723 @default.
- W4380993801 hasRelatedWork W4223943233 @default.
- W4380993801 hasRelatedWork W4293211451 @default.
- W4380993801 hasRelatedWork W4309045103 @default.
- W4380993801 hasRelatedWork W4312200629 @default.
- W4380993801 hasRelatedWork W4360585206 @default.
- W4380993801 hasRelatedWork W4364306694 @default.
- W4380993801 hasRelatedWork W4380086463 @default.
- W4380993801 isParatext "false" @default.
- W4380993801 isRetracted "false" @default.
- W4380993801 workType "article" @default.