Matches in SemOpenAlex for { <https://semopenalex.org/work/W4380994450> ?p ?o ?g. }
- W4380994450 endingPage "57665" @default.
- W4380994450 startingPage "57652" @default.
- W4380994450 abstract "Photoplethysmography (PPG) is a non-invasive and cost-efficient optical technique used to assess blood volume variations in the microcirculation. PPG technology is widely used in a variety of wearable sensors to investigate the cardiovascular system. Recent studies have demonstrated the utility of PPG analysis for carrying out large-scale screening to prevent and detect diabetes. However, most of these studies require feature extraction and/or several pre-processing steps. Over the past few years, the advent of deep learning has significantly impacted the analysis of biomedical signals. Despite their success in other fields, however, very few studies have focused on the application of deep learning to raw PPG signals for detecting diabetes. Existing studies have proposed large models trained on large amounts of data. In this paper, we present a Light CNN-based model for screening the presence of type 2 diabetes using a single raw pulse extracted from photoplethysmographic signals. In addition to the baseline architecture, we evaluate different model architectures that take as input age and biological sex or PPG handcrafted features. Furthermore, we apply transfer learning to all the tested architectures to evaluate the effectiveness of harnessing pre-trained models in detecting diabetes. We tested a model pre-trained on a general PPG shape dataset and another model pre-trained on a dataset containing hypertension PPG signals. Our model scored an AUC of 75.5 when trained with raw PPG waves, age, and biological sex without applying transfer learning, which is competitive with current state of the art." @default.
- W4380994450 created "2023-06-17" @default.
- W4380994450 creator A5038934826 @default.
- W4380994450 creator A5039660232 @default.
- W4380994450 creator A5060801996 @default.
- W4380994450 creator A5090545169 @default.
- W4380994450 date "2023-01-01" @default.
- W4380994450 modified "2023-10-14" @default.
- W4380994450 title "Type 2 Diabetes Detection With Light CNN From Single Raw PPG Wave" @default.
- W4380994450 cites W2029170996 @default.
- W4380994450 cites W2036371089 @default.
- W4380994450 cites W2047692880 @default.
- W4380994450 cites W2054173774 @default.
- W4380994450 cites W2062573090 @default.
- W4380994450 cites W2083872334 @default.
- W4380994450 cites W2087598211 @default.
- W4380994450 cites W2127401958 @default.
- W4380994450 cites W2164951032 @default.
- W4380994450 cites W2169793354 @default.
- W4380994450 cites W2336237563 @default.
- W4380994450 cites W2591742400 @default.
- W4380994450 cites W2607553521 @default.
- W4380994450 cites W2761603399 @default.
- W4380994450 cites W2763185407 @default.
- W4380994450 cites W2797694788 @default.
- W4380994450 cites W2891553246 @default.
- W4380994450 cites W2897468376 @default.
- W4380994450 cites W2922442184 @default.
- W4380994450 cites W2949335246 @default.
- W4380994450 cites W3017433192 @default.
- W4380994450 cites W3088444866 @default.
- W4380994450 cites W3160331490 @default.
- W4380994450 cites W3183218270 @default.
- W4380994450 cites W3211643653 @default.
- W4380994450 cites W3215924415 @default.
- W4380994450 cites W4200451282 @default.
- W4380994450 cites W4205273737 @default.
- W4380994450 cites W4211058450 @default.
- W4380994450 cites W4240079238 @default.
- W4380994450 cites W4283693963 @default.
- W4380994450 doi "https://doi.org/10.1109/access.2023.3274484" @default.
- W4380994450 hasPublicationYear "2023" @default.
- W4380994450 type Work @default.
- W4380994450 citedByCount "0" @default.
- W4380994450 crossrefType "journal-article" @default.
- W4380994450 hasAuthorship W4380994450A5038934826 @default.
- W4380994450 hasAuthorship W4380994450A5039660232 @default.
- W4380994450 hasAuthorship W4380994450A5060801996 @default.
- W4380994450 hasAuthorship W4380994450A5090545169 @default.
- W4380994450 hasBestOaLocation W43809944501 @default.
- W4380994450 hasConcept C106131492 @default.
- W4380994450 hasConcept C108583219 @default.
- W4380994450 hasConcept C116390426 @default.
- W4380994450 hasConcept C119857082 @default.
- W4380994450 hasConcept C138885662 @default.
- W4380994450 hasConcept C149635348 @default.
- W4380994450 hasConcept C150594956 @default.
- W4380994450 hasConcept C150899416 @default.
- W4380994450 hasConcept C153180895 @default.
- W4380994450 hasConcept C154945302 @default.
- W4380994450 hasConcept C2776401178 @default.
- W4380994450 hasConcept C31972630 @default.
- W4380994450 hasConcept C41008148 @default.
- W4380994450 hasConcept C41895202 @default.
- W4380994450 hasConcept C52622490 @default.
- W4380994450 hasConceptScore W4380994450C106131492 @default.
- W4380994450 hasConceptScore W4380994450C108583219 @default.
- W4380994450 hasConceptScore W4380994450C116390426 @default.
- W4380994450 hasConceptScore W4380994450C119857082 @default.
- W4380994450 hasConceptScore W4380994450C138885662 @default.
- W4380994450 hasConceptScore W4380994450C149635348 @default.
- W4380994450 hasConceptScore W4380994450C150594956 @default.
- W4380994450 hasConceptScore W4380994450C150899416 @default.
- W4380994450 hasConceptScore W4380994450C153180895 @default.
- W4380994450 hasConceptScore W4380994450C154945302 @default.
- W4380994450 hasConceptScore W4380994450C2776401178 @default.
- W4380994450 hasConceptScore W4380994450C31972630 @default.
- W4380994450 hasConceptScore W4380994450C41008148 @default.
- W4380994450 hasConceptScore W4380994450C41895202 @default.
- W4380994450 hasConceptScore W4380994450C52622490 @default.
- W4380994450 hasLocation W43809944501 @default.
- W4380994450 hasLocation W43809944502 @default.
- W4380994450 hasLocation W43809944503 @default.
- W4380994450 hasOpenAccess W4380994450 @default.
- W4380994450 hasPrimaryLocation W43809944501 @default.
- W4380994450 hasRelatedWork W2546942002 @default.
- W4380994450 hasRelatedWork W2889705046 @default.
- W4380994450 hasRelatedWork W2946016983 @default.
- W4380994450 hasRelatedWork W2960456850 @default.
- W4380994450 hasRelatedWork W3192840557 @default.
- W4380994450 hasRelatedWork W4312200629 @default.
- W4380994450 hasRelatedWork W4317565044 @default.
- W4380994450 hasRelatedWork W4380075502 @default.
- W4380994450 hasRelatedWork W4382286161 @default.
- W4380994450 hasRelatedWork W4386213806 @default.
- W4380994450 hasVolume "11" @default.
- W4380994450 isParatext "false" @default.
- W4380994450 isRetracted "false" @default.